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ABSTRACT

In the last decade, airborne LASER scanning (ALS) systems have evolved to provide increas-
ingly high-fidelity topographic mapping data. Point clouds and derivative models now rival
photogrammetrically-derived equivalents. Yet, despite technological advancement and widespread
adoption of light detection and ranging (LIDAR) data, sampling guidance and data quality (DQ)
assessment remains an open area of research due to the volumetric and irregularly sampled nature
of point clouds and the persistent influence of assumptions from early point scanning LIDAR
systems on assessment methods. This dissertation makes several contributions to the research area
by considering point cloud sampling strategies and DQ assessment from an information potential
perspective. First, a method is developed to estimate the quantifiable information content of each
point in a cloud based on localized analysis of structure and attribution. This salience measure is
leveraged to significantly reduce the population of points in a cloud while minimizing informa-
tion content loss to demonstrate the importance of structure and attribution to the information
potential of the cloud. Next, a method is developed to efficiently perform stratified sampling under
constraints that preserve specific reconstruction guarantees. The developed approach leverages
the previously established salience findings to provide general guidance for efficient sampling
that maximizes the information potential of point clouds and derivative levels of detail (LoDs).
Third, current point cloud sample spacing and density DQ assessment methods are evaluated to
surface potential biases. Alternative methods are developed that efficiently measure both metrics
while mitigating the discovered biases. Finally, an initial treatment of additional factors perceived
as remaining gaps in the current LIDAR DQ assessment landscape is presented. Several proposed
assessments directly follow from the methods developed to support sample spacing and density

assessment. Initial direction is provided for addressing the remaining identified factors.
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CHAPTER 1:
INTRODUCTION

Airborne and spaceborne topographic mapping, surveying, and remote sensing were once pri-
marily supported by photogrammetric analysis of aerial and satellite imagery. However, these
fields have experienced a major paradigm shift in the last twenty years with the introduction
and widespread adoption of three-dimensional (3D) point cloud products. Such products are
primarily generated by active sensing light detection and ranging (LIDAR) systems leveraging
light amplification by stimulated emission of radiation (LASER) illumination and a variety of
high-resolution ranging receiver technologies. A major impetus for the adoption of LIDAR point
clouds has been the integration of LIDAR point scanning systems onto airborne platforms creating
a class of remote sensing systems known as airborne LASER scanning (ALS) systems. In the same
twenty-year timespan, ALS systems themselves have experienced rapid technical maturation
resulting in a quickly evolving product and data quality (DQ) assessment landscape [1]. While
ALS systems advance to achieve increasingly dense aerial surveys, several open questions remain
regarding DQ assessment of the resultant point cloud products. Furthermore, recent advancements
in ALs systems have brought increased community focus to these open concerns.

First, the general trend of increasing LASER pulse repetition frequency as well as the
introduction of flash LIDAR systems [2] that spread LASER illumination over focal plane array
(FpA) detector assemblies—as is common with Geiger-mode avalanche photodiode (cMAPD), single-
photon LIDAR (sprL) photomultiplier tube (pMT), and optical time of flight (TOF) receivers—both
result in point clouds with tightly clustered samples. The resulting samples are spaced closely
enough that feature resolution may approach or be ultimately limited by the receiver optics. Thus,

current approaches for measuring product resolution that assume a sampling limitation do not



appropriately account for other limiting effects. Furthermore, as sampling rates increase linearly,
data volumes increase approximately quadratically. The nature of ALs systems is that point
cloud samples are generally irregular, but not unstructured. Thus, there is significant interest in
determining sampling strategies that maximize product information potential while maintaining
sampling efficiency to minimize product size. Stated differently, there is significant motivation to
avoid bloated products that blindly increase samples without simultaneously improving product
information potential.

Second, current product specifications and DQ assessment methods simultaneously draw
on the legacy of photogrammetric analysis while yielding to presumed geographic information
system (G1s)/electronic light table (ELT) limitations by assuming that sampling is based on square
rasters regardless of the irregularly sampled nature of ALs point cloud products. This hidden
bias arises from treating point clouds as raster imagery products to enable analysis within ELT
applications. The impetus for this treatment is twofold: first, image analysis and raster processing
techniques are fundamental disciplines in the photogrammetry and remote sensing domains that
are primary consumers of ALS point cloud data; second, there is a general presumption that G1s
applications developed to primarily manage vector and raster data are ill-equipped for managing
and analyzing large volumes of unstructured point data. However, this treatment frequently
results in disparities between computed and measured point cloud pDQ assessments. Furthermore,
determination of the raster scale to support assessments is ambiguous with several approaches
relying on coarse scales to mitigate potential aliasing artifacts. As a result, DQ assessments may risk
occluding potential issues when rasters are overly coarse and may risk false alarms when rasters
are overly fine. Unfortunately, current scaling guidance is inconsistent and current assessment
methods are demonstrably deficient [3].

Third, GMAPD, sPL PMT, and photogrammetrically derived correlation point clouds each
produce very regularly sampled point cloud products compared to point scanning systems.
Photogrammetrically derived correlation data—also known as structure from motion (sFm) data

due to the most common correlation and extraction technique employed—and GmAPD data in



particular must establish the sampling structure and fidelity used to form the final point cloud
product in post-collection processing. As previously mentioned, there is a general desire to
create the highest fidelity product possible with the least samples. However, current product
formation approaches generally assume a cubic voxel structure without regard to sampling
efficiency considerations. Furthermore, adoption of efficient sampling strategies must be supported
by DQ assessment approaches that avoid the current biases that lead to oversampling; this is
especially true for products such as these that approach uniform sampling [3].

The remainder of this chapter provides a general introduction to the dissertation research
area and establishes the objectives of this dissertation. Section 1.1 presents a brief introduction to
airborne topographic LIDAR. Section 1.2 presents a brief overview of current LIDAR product DQ
assessment. Section 1.3 addresses the importance of the dissertation research. Section 1.4 details
the specific contributions made by this dissertation. Finally, Section 1.5 outlines the structure of

the dissertation manuscript.

1.1 Airborne Topographic LIDAR

In the early 1960s, LIDAR was invented as a novel active sensing technology that used pulsed
LASER illumination [4]-[9] to acquire high-precision range measurements. The technology rapidly
matured throughout the latter half of the decade and by the early 1970s it achieved sufficient
technical readiness to be fielded as an instrument supporting experiments aboard the final three
National Aeronautics and Space Administration (NAsA) Apollo lunar missions [10]-[16]. These
early applications foreshadowed the role that LiDAR would eventually obtain as a powerful
topographic mapping solution for planetary remote sensing, especially for terrestrial mapping.
However, these early LIDAR systems lacked the steering and scanning capabilities of modern
systems and were incapable of the rapid, sustained, sampling that is required to generate high
fidelity elevation models and mapping products. In fact, the LIDAR instruments used during the

Apollo missions were only capable of sampling at a rate of about 20 s/pls to 28 s/pls (i.e., 0.036 Hz



to 0.050 Hz) and were primarily used to provide a center-of-frame elevation control point for
the mission’s metric mapping camera images. While the primary mode of the Apollo LASER
altimeter triggered synchronously with the metric camera, NAsA realized the potential for LIDAR
to be leveraged as an independent mapping system and provided a LASER altimeter operational
mode independent of the metric camera for collecting topographic ranging tracks of the lunar
surface [17], [18]. The lunar range profiles that resulted from the Apollo LASER altimeter collection
represent one of the first uses of LIDAR as an independent topographic mapping system.

Over the next two decades, LASER altimetry continued to evolve and systems specifically
developed for airborne remote sensing emerged. One of the most notable examples of the era
was the NAsA Airborne Oceanographic Lidar [19] which was operated in profile mode to serve
as a proof of concept for an airborne LASER topographic mapping system. However, general
advancement of airborne mapping systems was temporarily stymied due to imprecise knowledge
of platform global position, reliability and longevity of LASER components, and lack of area-filling
scanning systems. In the mid-1980s, NAsA and United States Army Corps of Engineers addressed
the limitation of global positioning knowledge when they pioneered the application of Global
Positioning System (GPs) aided airborne navigation [19], [20]. At the same time, LASER technology
experienced a significant advancement with the introduction of diode-pumped solid-state (Dpss)
LASERs that provided drastically improved performance and lifetimes at a fraction of the size,
weight, and power of the original lamp-pumped devices [21], [22]. In the late 1980s to early 199o0s,
these technological advancements were combined in prototype airborne systems specifically
designed for profiling Earth surface topography [23], [24]. By the late 1990s, these prototypes
evolved into the first semblance of modern ALs systems with the incorporation of high pulse
rate (greater than 5kHz) DPss LASERs and polygonal scanning mirrors to provide area-filling
capabilities with near-simultaneous commercialization of the technology [1], [25]-[29]. To this
day, the basic ALs system model is comprised of the following primary components: (i) a position
and orientation system (pos) consisting of a differential Gps (DGPs) and an inertial measurement

unit (1MU); (ii) a LIDAR transceiver consisting of a LASER illumination source, transmission and



receiving optics, and a TOF camera; and (iii) a boresight-steering scanning system [30], [31].

In the 25 years since the introduction of ALs mapping systems, the sensor technology
and the related support field of LIDAR data processing have continued to evolve. New sensing
modalities, including continuous wave (cw), full waveform, optical TOF, SPL PMT, GMAPD, and
linear-mode avalanche photodiode (LmAPD) flash LIDAR, have each added variations and nuances
to the processing work flows and attribution models of LIDAR products [32]-[36]. However, in
the presence of this rapidly changing technical environment, several organizations provided and
continue to maintain standardized LIDAR data exchange formats [37]-[45], assessment criteria

[46]-[52], and acceptance criteria [53]-[57].

1.2 LIDAR Product Quality Assessment

With the growing ubiquity of LIDAR data and the increasing demand for open data [58], we are
now entering into an era where LIDAR products are being used for applications beyond those that
drove the specifications of the initial collects or, in the case of commercial applications, where
data sets are being collected primarily to support data as a service (DAAS) business models with
the goal of meeting the needs of a wide variety of customers [36], [59]-[61]. In both paradigms,
it is critical to assess, enforce, and convey the quality of products so that end users can make
informed decisions about data fitness for various application purposes [51], [62].

To date, LIDAR product quality assessment has primarily focused on format validation
and quantification of positional accuracy and geometric product quality [63]-[68]. However,
product interpretability and information potential have been largely ignored. In the related
remote sensing field of photogrammetry, there is a long history of establishing image quality
models and assessing products according to these quality dimensions [69]-[72]. Very few studies
have been conducted to investigate the potential of applying similar methodologies to LIDAR
data sets [73]-[76]. Furthermore, once an interpretability assessment methodology is established

for LIDAR data, predictive models will need to be established to direct the collection planning of



LIDAR sensors to meet the desired interpretability criteria.

1.3 Importance of Research

Product DQ assessment for LIDAR data is an area of ongoing discussion and research. As recently
as 2019, presentations at the International LIDAR Mapping Forum and American Society for Pho-
togrammetry and Remote Sensing (AsPrs) Annual Conference highlighted biases and deficiencies
in current assessment techniques [3], [77]. Improved assessment methods are a current focus of
ASPRS LIDAR Division working groups.

Product assessment for interpretability and application continues to be of interest in
government forums as well. In that domain, the National Imagery Interpretability Rating Scale
(n11RS) has informed the assessment of two-dimensional (2D) image products under several
imaging modalities for decades. Automated quantitative product DQ assessment is supported
by the General Image-Quality Equation (GIQE), currently at version 5.0. Extension of NI1IRS and
GIQE concepts to 3D data sets is an open area of research with significant interest from the
Photogrammetry, 3D, and LIDAR Community of Practice (P3DLCOP).

Finally, understanding quality drivers in product assessment can inform the design of
sensors and collection planning to ensure products will meet or exceed desired threshold criteria.
Collection management systems can inform users when proposed collection plans will fail to
meet desired criteria and highlight the limiting system components. Planning for product to meet
specific quality criteria can reduce waste due to over-collection, which is especially important in

volumetric data sets.

1.4 Problem Statement

Image quality models are built to quantify product fitness for various applications; in the remote
sensing domain, image quality is most commonly related to object recognition and interpretability.

Metrics have been developed for a large variety of 2D imaging modalities [69]—[72]. Predictive



models have also been developed to guide sensor design and collection planning to achieve desired
quality levels in generated products [78], [79].

This dissertation develops several contributions to the area by examining point cloud sam-
pling strategies and quality assessment from an information potential perspective. The objectives
for this dissertation are to closely examine the factors that contribute to the information content
of point cloud data, develop sampling strategies that efficiently maximize the product information
potential, and finally to develop assessment approaches that can be leveraged as part of a broader
LIDAR DQ assessment framework (DQAF) to quantify sampling impacts on overall data fitness for
various applications.

The first contribution of this dissertation is the development of a method for estimating
the quantifiable information content of each point in a cloud based on a local neighborhood
analysis of point structure and attribution. We demonstrate that this salience measure can be
leveraged to significantly reduce the number of points in a cloud while minimizing information
content loss if points are removed very carefully [8o]. The developed salience measure and the
simplification approach demonstrate the importance of both point structure and attribution to
the resulting information potential of the point cloud product. However, several factors prevent
general adoption of the simplification method. These limiting factors point to the need to develop
more efficient sampling strategies that maintain respect for the salience findings.

The second contribution of this dissertation is the development of a method for efficiently
performing lattice-constrained stratified sampling under constraints that preserving specific
reconstruction guarantees. The sampling method is leveraged to perform point cloud level of detail
(LoD) generation [81]. Furthermore, the approach leverages the previously established salience
findings to provide general guidance for efficiently sampling scenes to maximize information
potential in point cloud products and derivative LoDs.

The third contribution of this dissertation is an examination of biases in the current
DQ assessment approaches for point cloud interpoint spacing and sampling density and the

development of an approach for efficiently measuring both metrics while avoiding the biases



present in current methods.

The final contribution of this dissertation is an initial treatment of additional factors
perceived as remaining gaps in the current point cloud pDQ assessment landscape. Several proposed
assessments directly follow from the methods developed earlier in this dissertation. Initial direction
is provided for assessing the remaining identified factors, though full treatment requires additional
development beyond the scope of this dissertation. It is our hope that by presenting an initial
treatment that we will enable subsequent discussion and research to fully develop a robust LIDAR

DQAF that considers all of the identified factors.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides a synopsis of
historical and current pQ assessment and predictive modeling approaches for LIDAR products.
Chapter 3 presents the development of the information content salience metric and its application
to mesh-free point cloud simplification. Chapter 4 presents the development of lattice-constrained
stratified sampling, the establishment of multiple feature-preserving lattice scale factors, and
application to point cloud LoD generation. Chapter 5 examines current LIDAR point cloud pQ
assessment approaches for interpoint spacing and sampling density and develops an assessment
approach that mitigates existing biases. Chapter 6 presents a discussion of proposed methods
and suggested direction for addressing remaining gaps in the LIDAR point cloud DQAF. Finally,

Chapter 7 offers a final summary of contributions and concluding remarks for the dissertation.



CHAPTER 2:
LITERATURE REVIEW

This chapter provides a synopsis of prior research and related published works that serve as the
foundation for this dissertation. Section 2.1 provides a very brief discussion on the definition of
quality. Section 2.2 presents background on general DQAFs and specialization for geographic data
products. Section 2.3 provides a summary of domain-specific studies that performed empirical pQ
assessments for their specific applications and summarizes general product sampling guidance
that emerged as a result. Section 2.4 presents the mathematical limits on signal reconstruction due
to discrete sampling. Section 2.5 summarizes research on sampling limits on human performance
against target discrimination tasks. Section 2.6 presents additional factors that impact product
interpretability for 2D remotely sensed geographic raster products. Section 2.7 reviews current

assessment approaches for remotely sensed geographic raster and point cloud products.

2.1 Quality Definition

There are two critical interpretations of the word quality in the context of DQ assessment. The
first relevant definition relates to the inherent features or properties of an object. The second
relevant definition relates to the degree of excellence or superiority of an object [82]. Juran and De
Feo elaborate on these definitions and their inherently competing natures. In the first context,
quality relates to how well features meet customer needs. Increasing quality, in this context,
means introducing a larger feature set to sufficiently address a greater market share; thus, higher
quality implies greater cost. In the second context, quality relates to excellence in process and
production as evidenced by freedom from defects and failures. Increasing quality, in this context,

means increasing production efficiencies and yields, and reducing process variances, waste, and



rework; thus, higher quality implies lesser cost [83]. Observe that these two interpretations carry
opposing cost implications. Neither aspect of quality is necessarily more or less important than
the other. And so, in an attempt to succinctly summarize the balance that must be struck between
these two definitions, Juran and De Feo establish the phrase “fit for purpose” to define product
quality. This phrase represents a refinement of the commonly encountered definition of “fit for
use” previously established by Juran and Godfrey due to the shifting focus of bQ management

from quality of goods to quality of services and information [83], [84].

2.2 Data Quality Assessment Frameworks

In the mid-1980s, International Organization for Standardization (1s0) began developing the
150 9000 family of standards which describes the fundamentals of general quality management
systems [85]-[87]. In that family of standards, quality is explicitly defined as the “degree to which
a set of inherent characteristics of an object fulfills requirements” [87, p. 18]. As expected, this
definition incorporates both critical interpretations of quality previously discussed (i.e., inherent
properties and degree of excellence). Furthermore, we can make two important observations based
on this definition. First, that quality is derived in the context of specific requirements and is
therefore potentially variable for the same object in different contexts. Second, that quality is
assessed from inherent characteristics of an object and thus, within any given context, quality is
assessed by examining and evaluating the object itself.

Recognizing the inherent complexities involved with DQ measurement and management,
DQAFs establish structure and guidelines for defining specific elements and indicators of quality
within the context of a small set of quality dimensions [88]. For example, Sebastian-Coleman estab-
lishes a generic set of 48 quality measurement types based on a set of five dimensions: completeness,
timeliness, validity, consistency, and integrity. While the DQAF provided by Sebastian-Coleman
is generic and applicable to any domain, it is common for DQAFs to be specialized for specific

domains. For geographic information, 1so merged the geographic information standards 1so
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‘ Data Quality Element ‘

‘ Completeness ‘ ‘ Logical Consistency ‘ ‘ Positional Accuracy ‘ ‘ Usability ‘

Commission ‘ 4{ Conceptual Consistency

Omission ‘ 4{ Domain Consistency

4{ Format Consistency ‘ 4{ Gridded Data Positional Accuracy ‘
4{ Topological Consistency ‘

‘ Thematic Accuracy ‘ ‘ Temporal Quality ‘

4{ Classification Correctness ‘ 4{ Time Measurement Accuracy ‘

4{ Non-Quantitative Attribute Correctness ‘ 4{ Temporal Consistency ‘

4{ Quantitative Attribute Accuracy ‘ 4{ Temporal Validity ‘

Figure 2.1: 150 19157 data quality dimensions and elements

4{ Absolute or External Positional Accuracy ‘

4{ Relative or Internal Positional Accuracy ‘

19113 (quality principles) [89], 150 19114 (quality evaluation procedures) [90], and the technical
specification (Ts) 150/Ts 19138 (data quality measures) [91] into the common DQ standard 1so
19157 [51]. The DQAF established by this standard largely mimics similar structures developed for
other domains (e.g., [92], [93]) and organizes quality elements according to the dimensions of
completeness, logical consistency, positional accuracy, temporal quality, thematic accuracy, and

usability as illustrated in Figure 2.1.

Data Quality Element

0..1 | measure o..1 | method 1. | result

Measure Evaluation Method Result

Figure 2.2: 150 19157 data quality descriptors

Each quality element is described by a measure, an evaluation method, and a result as
illustrated in Figure 2.2. The DQ measure (DQM) identifies the type of evaluation used to assess

the element. The evaluation method details the processes and procedures used to conduct the
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evaluation. The results summarize the findings of the evaluation. To promote consistent evaluation
methods, the 150 19157 standard establishes 81 DQMs, as summarized in Table 2.1, that may be used

to assess quality elements.

Table 2.1: 1S0 19157 Standard pQMs [51]

Dimension Element Measure 1D
Completeness Commission Excess Item 1
Number of Excess Items 2

Rate of Excess Items 3

Number of Duplicate Feature Instances 4

Omission Missing Item 5
Number of Missing Items 6

Rate of Missing Items 7

Logical Consistency  Conceptual Conceptual Schema Non-Compliance 8
Consistency Conceptual Schema Compliance 9
Number of Non-Compliant Items 10

Number of Invalid Surface Overlaps 11

Rate of Non-Compliance 12

Rate of Compliance 13

Domain Consistency Value Domain Non-Conformance 14
Value Domain Conformance 15

Number of Non-Conforming Items 16

Rate of Value Domain Conformance 17

Rate of Value Domain Non-Conformance 18

Format Consistency Physical Structure Conflicts 119
Number of Physical Structure Conflicts 19

Rate of Physical Structure Conflict 20

Topological Number of Faulty Point-Curve Connections 21
Consistency Rate of Faulty Point-Curve Connections 22
Number of Missing Connections (Undershoots) 23

Number of Missing Connections (Overshoots) 24

Number of Invalid Slivers 25

Number of Invalid Self-Intersect Errors 26

Number of Invalid Self-Overlap Errors 27

Positional Accuracy  Absolute Accuracy Mean Value of Positional Uncertainties 28
Bias of Positions 128

Mean Value of 2D Position Uncertainty Excluding Outliers 29

Number of Position Uncertainties Above a Threshold 30

Rate of Position Uncertainties Above a Threshold 31

Covariance Matrix 32

Linear Error Probable 33

Standard Linear Error 34

Linear Map Accuracy at 90% Significance 35

Linear Map Accuracy at 95% Significance 36

Linear Map Accuracy at 99% Significance 37

Near Certainty Linear Error 38
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Dimension Element Measure ID
Root Mean Square Error 39

Absolute Linear Error at 90% Significance (NATO) 40

Absolute Linear Error at 90% Significance 41

Circular Standard Error 42

Circular Error Probable 43

Circular Map Accuracy at 9o% Significance 44

Circular Map Accuracy at 95% Significance 45

Near Certainty Circular Error 46

RMSE of Planimetry 47

Absolute Circular Error at 9o% Significance (NATO) 48

Absolute Circular Error at 9o% Significance 49

Uncertainty Ellipse 50

Confidence Ellipse 51

Relative Accuracy Relative Vertical Error 52
Relative Horizontal Error 53

Temporal Quality Time Measurement Time Accuracy at 68.3% Significance 54
Accuracy Time Accuracy at 50% Significance 55
Time Accuracy at 90% Significance 56

Time Accuracy at 95% Significance 57

Time Accuracy at 99% Significance 58

Time Accuracy at 99.8% Significance 59

Temporal Consistency  Chronological Order 159
Thematic Accuracy  Classification Number of Incorrectly Classified Features 60
Correctness Misclassification Rate 61
Misclassification Matrix 62

Relative Misclassification Matrix 63

Kappa Coefficient 64

Non-Quantitative Number of Incorrect Attribute Values 65
Attribute Accuracy Rate of Correct Attribute Values 66
Rate of Incorrect Attribute Values 67

Quantitative Attribute  Attribute Value Uncertainty at 68.3% Significance 68
Accuracy Attribute Value Uncertainty at 50% Significance 69
Attribute Value Uncertainty at 90% Significance 70

Attribute Value Uncertainty at 95% Significance 71

Attribute Value Uncertainty at 99% Significance 72

Attribute Value Uncertainty at 99.8% Significance 73

Usability Aggregation Measure  Data Product Specification Passed 101
Data Product Specification Fail Count 102

Data Product Specification Pass Count 103

Data Product Specification Fail Rate 104

Data Product Specification Pass Rate 105

It is worth noting that Usability is the only DQ dimension that does not have derivative

elements defined in the 150 19157 standard. The standard intentionally describes this element in

very general terms:
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Usability is based on user requirements. All quality elements may be used to evaluate
usability. Usability evaluation may be based on specific user requirements that cannot
be described using the quality elements described above. In this case, the usability
element shall be used to describe specific quality information about a data set’s

suitability for a particular application or conformance to a set of requirements. [51,

p. 10]

It is also worth noting that the only pgms directly associated with the usability element are
aggregation measures used to summarize compositions of bQ elements. This leaves the assessment
of usability and “fitness for purpose” largely unaddressed by the standard. This is, in part, by
design as 150 19157 expressly avoids establishing minimum thresholds for determining quality
levels (QLs); instead, preferring to defer that scope to other entities.

Accordingly, establishing usability assessment criteria for LIDAR products has largely been
the result of research conducted by LIDAR data consumers, as discussed in Section 2.3. However,
there have been a few studies that researched the subject from a data producer perspective [73]-
[75], [94]. The primary consensus among all of these studies is that LIDAR DQ assessments should
evaluate sampling density as a criterion for usability and determination of fitness for purpose.
However, justification for this assessment recommendation is not clearly specified. Instead, there
appears to be an underlying assumption of a correlation between improved product interpretability
and increased point density; a topic examined further in Section 2.4 and Section 2.5. In addition
to sampling density, Wu et al. [75] also recommends evaluation of intensity interpretability. This
recommendation acknowledges the use of LIDAR sensors as active imaging systems resulting
in products with both photo-interpretable characteristics as well as geometric-interpretable

characteristics which is discussed further in Section 2.6.
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2.3 Empirical Studies Relating Sampling Fidelity to Product Fitness

Recall from Section 2.1 that quality is, in part, dependent on the application context. As such, initial
research relating LIDAR product characteristics to fitness for purpose was conducted primarily by
LIDAR data consumers. By examining the commonalities among these domain studies, we can
start to identify bQms appropriate for assessing LIDAR product usability.

In this body of research, domain studies consistently evaluate the impact of LIDAR product
sample spacing (i.e., the horizontal distance between adjacent samples) or sample density (i.e.,
the number of samples per unit area) on the performance of algorithms and assessment methods.
In fact, among LIDAR data consumers, sample spacing and sample density are considered key
characteristics of point cloud data, similar to ground sample distance (GsD) and spatial resolution,
or ground resolved distance (GrRD), for photogrammetric data.

Unlike raster data, though, point cloud products are irregularly sampled. As such, there is
a recognized distinction between localized and average point density assessment [75]. Regarding
average point density, point cloud products are regularly assessed to determine a nominal point
spacing (NPs) (r) or a nominal point density (NPD) (p) [95]. However, there is no consensus on
an accepted evaluation methodology [96]-[99]. Furthermore, the two metrics are frequently
improperly related to each other by (2.1) [57], [100].

1,2
p = (;) (2.1)
However, this is a relationship that is only valid for samples taken on a square lattice. While
LIDAR collections are typically planned to be as uniformly sampled as possible, the resulting point
clouds are generally unstructured and rarely support this underlying assumption.

In practice, NPD is used to characterize data sets that have an expected sampling den-
sity greater than 1pls/m? while NPs is used otherwise [55]. Unfortunately, given the assumed
relationship between NPs and NPD, the complementary metric is often computed rather than
measured. Regardless, while the methodologies used to establish Nps and NPD as DQMs have been

less than ideal, general usability strata have nonetheless emerged from the volume of domain
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studies examining the correlation between these values and the successful execution of various
applications. The following selections illustrate the stratification of optimal sampling levels that
has emerged in the last several years.

Raber et al. [101] presented a study assessing the impact of LIDAR point cloud NPs on
digital elevation model (DEM) accuracy and flood zone delineation. In this article, the researchers
simulated low-density LIDAR collections by using a simple count-based decimation strategy within
scan lines of linear-mode LIDAR data to thin points in the cross-track direction and dropped entire
scan lines in the along-track direction to achieve a relative uniformity in their thinned data sets.
This approach allowed the researchers to emulate point clouds collected with Npss of 1.35m to
9.64 m. Perhaps the most important finding from their study was, “the absence of ... a significant
pattern relating error in DEM accuracy to post-spacing through the range of post-spacing values

tested” [101, p. 802]. The authors further emphasized the significance of this finding by stating:

This is an important finding since it implies that more lidar data is not always beneficial
in the flood mapping application, especially when cost is considered. Furthermore,
these findings suggest that there may be certain cases where having more data is not

only redundant, but may increase error in the final product. [101, p. 802]

Magnusson, Fransson, and Holmgren [102] presented a study assessing the robustness of
forest characterization metrics derived from LIDAR point cloud data with respect to the Nps of
the collection. In the study, the researchers developed a technique for thinning point clouds to
simulate lower-density collections by enforcing a minimum horizontal distance between adjacent
returns. This method is essentially a stratified sampling approach. The synthesized data sets in
their study emulated collections with NPss of 1 m to 15m and were evaluated to determine their
impact on calculating various characteristic attributes of forests. This article concluded that while
estimation accuracy degraded as the thinning level increased, the degradation was gradual up to
a Nps of 10 m. Furthermore, the accuracy of the attributes obtained, even at a NPs of 15 m, were
at least equivalent to those commonly obtained using traditional photogrammetric methods.

Ruiz et al. [103] independently confirmed the results of the study performed by Magnusson,
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Fransson, and Holmgren [102] in their study that examined the combined effects of plot size and
LIDAR density on forest structure attribute estimates. This article found that while LIDAR density
has a slight influence on the derived models, plot size was the dominant factor in estimating
structure attributes. This article concluded that the optimal NPD for forest structure attribute
estimation is in the range of 1 pls/m? to 5 pls/m?.

In a similar study, Hansen, Gobakken, and Naesset [104] examined the impacts of LIDAR
point cloud density on digital terrain model (DTM) and canopy metrics in tropical rainforests. The
results of the study largely echoed the findings of Ruiz et al. [103], with a slightly coarser NPD
recommendation of 0.5 pls/m?.

Vauhkonen et al. [105] examined the effects of LIDAR sampling density on finer structures,
expanding the work previously done on forest-level estimation to tree-level estimation. The
authors adapted the thinning approach introduced by Magnusson, Fransson, and Holmgren
[102] to be based on rectangular rasters of increasing cell size. The NPD of the sample data sets
were significantly greater than those evaluated by Magnusson, Fransson, and Holmgren [102],
emulating collections with NPDs of 0.6 pls/m? to 25 pls/m? (equivalent to NPss of 0.2m to 1.3 m).
The authors concluded that while NPD on the order of 12 pls/m? were typical for LIDAR collections
supporting tree-level applications, a coarser point density on the order of 3 pls/m? was sufficient
for species identification and calculating characteristic attributes of the tree species evaluated.

The studies presented above are not exhaustive; rather, they illustrate the formal research
that has informed the establishment of NpPs/NPD strata for LIDAR point cloud products based on
use case and phenomenology. Rohrbach [100] summarized several common product sampling

levels that have emerged through this process as presented in Table 2.2.

2.4 Sampling Limits on Signal Reconstruction

While none of the previously discussed studies explicitly formalizes a theoretical basis for the

emergent sampling strata, Kodors [99] observes that findings in similar studies appear to be
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Table 2.2: Common Product Point Densities [100]

Min NPD Use Case
(pls/m?)
0.5 Basic surface model, Forest inventory
1 Flood modeling, Dam and water inundation calculations
2 Multi-purpose data sets
5 Basic 3D models
10 Detailed 3D city models

strongly correlated with the classical Sampling Theorem (also known as the Nyquist-Shannon
theorem, Whittaker-Kotelnikov-Shannon theorem, Nyquist-Kotelnikov-Shannon theorem, and
Whittaker-Nyquist-Kotelnikov-Shannon theorem) [106]-[109] which establishes sampling limits
and conditions for perfect reconstruction of one-dimensional (1p) band-limited functions. Shan-
non’s formulation of the theorem is one of the most commonly cited, which appears as Theorem 1

of [109, p. 11]:

Theorem 2.1 (Sampling Theorem). If a function f(t) contains no frequencies higher than w Hz, it

is completely determined by giving its ordinates at a series of points spaced % s apart.

In other words, sampling must occur at twice the rate of the highest frequency component
of the source signal to achieve perfect reconstruction. Since real-world signals are seldom truly
band-limited, a common relaxation involves inverting the implication stated in the theorem by
imposing an artificial band-limit and asserting that any subsequent reconstruction approximates
the source signal while considering components up to the enforced limit. Regardless, both the
formally stated theorem and the common relaxation acknowledge an inherent limit on recon-
struction fidelity imposed by sampling. With this understanding of sampling limits on the fidelity
of modeled data, we can conclude that at least one usability bom should address the sampling
achieved for a product.

However, care must be taken to avoid improperly generalizing Theorem 2.1 to imagery
and point cloud products. While this theorem is frequently referenced as a basis for planar and

volumetric sampling guidance (e.g., [3], [97], [99]), it only applies to 1D signals. This means that
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the generalization typically assumed (i.e., simply doubling the sample density in each orthogonal
dimension with respect to the fidelity of features to be represented) is generally inefficient
and results in over-sampled data. Rather, for multidimensional data sets, the generalization of
Theorem 2.1to wave-number limited functions provided by the Petersen-Middleton N-Dimensional

Sampling Theorem [110, p. 289] is appropriate.

Theorem 2.2 (N-Dimensional Sampling Theorem). A function f(x) whose Fourier transform F(w)
vanishes over all but a finite portion of wave-number space can be everywhere reproduced from
its sample values taken over a lattice of points {l;v{ + l,vy + - + INvN} Lu b, o IN= 0,21, 42, ...,
provided that the vectors {vj} are small enough to ensure nonoverlapping of the spectrum F(w)
with its images on a periodic lattice defined by the vectors {uy}, with v;- u; = 276y and &y being
Kronecker’s delta:

1, j=k

Sy = .
k™o, j£k

Petersen and Middleton further define efficient sampling lattices to be those that use
a minimum number of samples to achieve an exact reproduction of the wave-number limited
function. They observe that the minimum number of samples required is directly related to the
hypervolume of the parallelepiped defined by the sampling lattice basis vectors {v;} and thus,
the most efficient sampling is achieved when the region of wave-number space where F(w) is
nonvanishing is enclosed in the smallest repeatable nonoverlapping parallelepiped defined by the
vector lattice {uz}. This observation ultimately provides the formal theoretical justification for
establishing sampling density as a bQm for both imagery and point cloud products.

Notice that while Petersen and Middleton establish a 120° rhombic (hexagonal) lattice
as the most efficient sampling lattice in 2D and a body-centered cubic (Bcc) lattice as the most
efficient sampling lattice in 3D, they did not consider efficiency in the case of under-sampling nor
simultaneous reconstruction of texture and structure in 3p. Sampling lattice efficiency in the case
of under-sampling is examined in [111] where face-centered cubic (Fcc) lattices are demonstrated

to be optimal. This is an important result since real-world signals are seldom wavenumber-limited.
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Consideration of texture and structure sampling is examined in [81] where multiple feature-
preserving sampling lattices are established. Specifically, for point cloud products, Fcc sampling
lattices again offer improved efficiency over the typically recommended simple cubic (sc) lattices
while considering fidelity of both texture (intensity, color, and other attribution) and structure

(spatial) features.

2.5 Sampling Limits on Human Performance in Target Detection and Recognition

Section 2.4 establishes that sampling strategies impose a firm bound of the fidelity of features that
can be represented in point cloud products. However, no thresholds are established for relating
product fidelity to task performance. This mapping is necessary to perform a determination of
product fitness for purpose.

In the 1950s, Johnson pioneered spatial and frequency domain approaches to analyze the
ability of observers to perform specific object discrimination tasks [112]. His work was informative
for relating human visual system performance to human task completion. The primary contribution
of his initial study was to establish a table relating the number of equivalent bar target cycles
across a critical dimension of a target to a linear error probable (i.e., at 5oth percentile) (LEP) for
successfully completing four discrimination tasks. The set of mappings is known as the Johnson

Criteria and is summarized in Table 2.3.

Table 2.3: Summary of Johnson Criteria

Discrimination Level Cycles on Target Description

Detection 1.00 + 0.25 Presence of object
Orientation 1.40 £ 0.35 Aspect of object
Recognition 4.00 + 0.80 Class of object
Identification 6.40 £ 1.50 Subclass of object

Johnson recognized that several other factors, including viewing angle and system modu-
lation transfer function (MTF), could impact the criteria. He intended for the criteria to be used to

provide a coarse quantifiable estimate of detection performance within the application domain of
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the Army Night Vision and Electronic Sensors Directorate. However, the need for such criteria in
other domains soon led to wide spread adoption elsewhere [113], [114].

Understanding that each cycle corresponds to at least two pixels in a digital image provides
a means to relate the criteria to image samples [113]. As such, the criteria were commonly used
to determine the maximum range at which objects could be resolved by imaging systems based
on the relevant discrimination task. However, the impact of the factors predicted by Johnson
as well as other factors including scene clutter, signal to noise ratio (SNR), and blur, eventually
resulted in the Johnson Criteria being shown to be inaccurate, prompting the development of
improved criteria [114]-[117]. Despite the known inaccuracies of the Johnson Criteria, they remain
popular for their original intended purpose of quickly estimating potential detection performance
of designed systems. Furthermore, they frequently serve as a baseline for improved assessment

approaches.

2.6 Interpretability and Information Potential Assessment

While sampling and resolution are key measures of performance for imaging systems, they are
insufficient in isolation for conveying quality from an interpretability perspective. Interpretability
is ultimately defined by a product’s potential for intelligence information in terms of satisfaction
of essential elements of information (EEIs). In 1974, the Imagery Resolution Assessments and
Reporting Standards (1IRARS) Committee published the first version of the NIIRS, a subjective
scale related to a visible-spectrum electro-optical (Eo) image’s fitness for supporting various
interpretation tasks based on the objects detectable within the image [116]. This effort represented
one of the first attempts to quantify the information potential of remotely-sensed imagery.
Through adoption and application of the initial NIIRS criteria, analysts discovered flaws
that hindered their ability to assess products. The criteria were developed primarily to support
military applications, and therefore referenced military objects categorized by orders of battle

from the era when they were developed. However, analysts had difficulty determining a rating
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when none of the referenced objects were present in the subject imagery, as one would expect for
scenes of general civilian and cultural artifacts. By the late 1980s, this issue was exacerbated when
several objects referenced in the original NIIRs criteria were no longer commonly seen, even
in military contexts. As a result, the criteria were updated and republished to include a cultural
category that referenced non-military objects in 1991 and 1994 [70]. Furthermore, additional
improvements were made to the criteria to better differentiate between the ratings, improve the
rigor of the assessment, and address other perceived flaws in the original criteria. The updated
criteria were eventually stripped of military references, declassified, and released to the public
as the Civil NIIRS by IRARS in 1996 [118]. A summary of this rating scale and a sample of the

associated cultural artifacts used for assessment are provided in Table 2.4.

Table 2.4: Example Civil N11Rs Criteria

NIIRS Criterion

Interpretability of the imagery is precluded by obscuration, degradation, or very poor resolution.
Detect a medium-sized port facility.

Detect large buildings (e.g., hospitals, factories)

Detect trains or strings of standard rolling stock on railroad tracks.

Identify individual tracks, rail pairs, control towers, switching points in rail yards.

Identify individual rail cars by type and locomotives by type.

Identify automobiles as sedans or station wagons.

Identify individual railroad ties.

Identify windshield wipers on a vehicle.

Detect individual spikes in railroad ties.

O O AU R W N RO

Adjacent to the development of the N1I1RS was the development of prediction and estimation
models for imagery interpretability. At the most basic level, NIIRS was assumed to be primarily
related to the sampling scale of the imagery. In fact, the NIIRS ratings were developed to roughly
correspond to a linear increase in rating for each doubling of samples. This assumed relationship
was made more explicit in the variant of the original N11RS adopted by North Atlantic Treaty
Organization (NATO) in 1954, called the Imagery Interpretability Rating Scale (11rs), that was
published with a table relating 11Rrs level to GRD ranges [118]. However, the predictive accuracy

of this simple relationship is low, especially considering the difficulty relating GRD to GsD first
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discussed in Section 2.5 [114].

Prediction and estimation of imagery interpretability continued to evolve over the next 40
years, with several studies identifying additional relevant factors, examining their interrelation-
ships, and developing relevant predictors. The ultimate result of this research was the development
of a quantitative model for predicting N11Rs called the GIQE. The GIQE estimates a NIIRs level by
evaluating several DQMs expected to account for the target, sensor, and processing characteristics
of E0 imaging systems. The factors considered by the original GIQE are sampling fidelity via Gsp,
resolution fidelity via relative edge response (RER), sensor performance via SNR, and processing
enhancement effects via noise gain (G) and height overshoot (H) resulting from edge sharpening

[119]. The initial published versions of the GIQE (GIQE 3 and GIQE 4) had the following basic form:
__ . G _
NIIRS = ¢ + ¢ 1g(GSDy) + ¢, Ig(RER,) + e + ¢y Hy . (2.2)

The weights for each bom were either established through an enforced relationship, as for the
sampling fidelity effects (c;), or computed through regression analysis based on analyst surveys.
Each poMm represents a source of potential degradation, thus c, represents the maximum possible
rating under the GIQE model. It is also worth noting that potential disparity in along-scan and
cross-scan DQM assessment was acknowledged by the G1QE creators. Thus, the final GIQE leverages
the geometric mean, represented as x,, to summarize the independent along-scan and cross-scan
assessments for several of the component DQMs.

The latest version of the GIQE (GIQE 5) represents a philosophical change in the scope of
the prediction model. Specifically, the new model assumes assessment of well-enhanced imagery
that is exploited using an ELT and displayed on a calibrated high-quality liquid crystal display
[120]. This shift is important because it removes processing assumptions from the model and
focuses the assessment scope on the data in its presented state. Specifically, bQms related to
enhancement were removed from the latest model since they represented factors that could not

be determined from direct inspection of the data. The revised GIQE model has the following form:
C3 4 Cs
NIIRS = ¢y + ¢; lg(GsD) + c2<l - exp(—)) + ¢y 1g(RER)* + — . (2.3)
SNR SNR
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The newer model updates the computations of the Gsp and RER DQMs since it was observed in
both cases that the geometric mean used in previous versions was improperly applied, though for
different reasons. This revision offers a cautionary note for development of future pQms to ensure
that the semantics of the geometric mean are both justified and properly applied.

In the GsD case, the geometric mean represented a summary of an expected worst case
estimate based on viewing angle. However, the measure was observed to over-estimate degradation
effects from increased viewing obliquity. The updated term is essentially a mean-of-means that
offers a compromise between a normal-plane projected Gsp estimate and a ground-projected Gsp
estimate [120], [121]. Such a compromise metric may be applicable to point cloud assessment as
well, especially considering the fact that ALs point clouds are often generated as an aggregation
of independent collections and are rarely exploited from any of the collection perspectives.

In the RER case, the initial pQm failed to capture loss effects due to motion blur. This
essentially amounted to an unmodeled error. The relevant effect primarily manifests as significantly
different RERs in the along-scan and cross-scan directions. In this case, the geometric mean
provided an optimistic estimation of the subsequent loss in interpretability. The revised RER DQM
doubly weights the larger component which has been demonstrated to accurately reflect the
interpretability loss up to 8 pixels of blur [120], [121].

The general approach used to establish the N1IRs and GIQE has been shown to be applicable
to several other sensing modalities. In fact, after the widespread adoption of NIIRs and the
development of the GIQE for visible-spectrum Eo imagery, NIIRs variants and respective prediction
models were adopted for other 2D sensing systems including multispectral, infrared, motion
imagery, and synthetic aperture radio detection and ranging [69]-[72], [122]-[124].

The successful adaptation of the N11RS/GIQE methodology to multiple sensor types suggests
a potentially generalized approach that can be adapted for 3p imagery and point cloud products.
Indeed, such a model was proposed by Harney who sought to establish an information-potential
assessment methodology for multisensor systems and relate the assessment to Johnson’s Criteria

[125]. The general model has a strong resemblance to the GIQE and is essentially an image quality
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equation based on independent bQms:

Hiot = Hint + Hshp + Hext + Hhye + Hrng + Hpol + Hyel - (2.4)

Since Harney was specifically considering multisensor systems, his model contains additional
poMms that would not be applicable to Eo imagery. The factors that he considered are intensity
variation (dynamic range), spatial arrangement (coverage), context, color (band depth), range,
polarization, and velocity [113], [125]. Unfortunately, the model proposed by Harney has remained
conjecture with no direct adaptation and validation. However, given the similarity to the GIQE, it
provides a potential methodology for establishing quality equations outside the domain of 2D
raster imagery.

Indeed, to develop a N11Rs like assessment of point cloud data, 3D analogs of the GIQE
component DQMms will need to be developed. The GIQE RER evaluation methodology may be
directly transferable to assessment of horizontal texture resolution in nadir-oriented orthographic
projections of point cloud data. However, dynamic range of intensity signatures should be expected
to compress as surfaces become increasingly vertically oriented for primarily nadir-looking ALs
systems due to increasing incidence of the LASER illumination source. Furthermore, the texture
resolution assessment approaches will need to be extended to surface resolution assessments.
Miles et al. provide an approach for leveraging in situ targets for empirically deriving system
point spread function (psF) and contrast transfer function to deduce the system MTF [126].

To date, no version of N11Rs has been developed for LiDAR. However, a feasibility study
was completed and published by Duan et al. that suggests some direction to such an endeavor [76].
It is worth noting that the general approach suggested by Duan et al. requires converting point
clouds to depth images. This transformation itself introduces an error source into the analysis
and fundamentally changes the input data from 3D to 2D thus inherently modifying the product
interpretability and information potential. Furthermore, this approach completely disregards the

information and interpretability impacts of point attribution, including intensity and color data.

25



2.7 Project Specification and LIDAR Product Acceptance Criteria

In the absence of established standards for LIDAR quality assessment, we can develop an initial
baseline for potential bQMs by examining currently published L1DAR product specification and
product acceptance criteria. By the early 2000s, the LIDAR mapping community acknowledged
the lack of common standards, guidelines, and best practices for specifying LIDAR projects and
assessing deliverables. Subsequently, the community began organizing to address this void.
Initial proposed product levels within the AsPrs were primarily focused on the amount of post-
processing, and hence touch labor and production cost, incurred by generating deliverables as
illustrated in Table 2.5 [127]. While this initial model addressed the iterative refinement and
injection of information content achieved through point cloud post-processing work flows, it
failed to relate product characteristics to application fitness. As a result, the proposed product

definition levels were never adopted.

Table 2.5: Process-Centric LIDAR Product Definition Levels [127]

Level Name Description
1 Basic Fully geo-referenced point data with no additional filtering or analysis.
“All Points”
2 Low Fidelity =~ Automatically ground-classified point data with no additional filtering or analysis.
“First Pass”

3 High Fidelity  Fully edited point data. Extensively reviewed by experienced data analyst(s) to remove

“Cleaned” classification artifacts and provide a “99%” clean terrain model.

4 Feature Point data processed to provide classification of specific features of interest such as power
Layers lines or building footprints.

5 Fused Point data attributed with information from additional sensors such as digital imagery,

hyperspectral data, thermal imagery, or planimetric data.

Recognizing that the primary perceived use of LIDAR products was for topological surface
evaluation and exploitation, the initial focus for product assessment and acceptance criteria was
largely dominated by accuracy assessment [46], [128]-[131]. As a result, accuracy assessment
methods have been standardized and are now widely adopted and understood [46], [52], [63]-[68].

As illustrated in Table 2.6, accuracy assessment for point clouds and elevation models is typically
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performed with respect to vertical. Horizontal error is generally assumed to be on the order of
the specified sampling fidelity. However, much like GsD is not the only factor influencing imagery
interpretability, the LIDAR mapping community recognized that factors other than accuracy
influence the usability of LIDAR data. Despite the recognized need for common guidelines and
specifications [127], it would take over a decade to establish a commonly accepted base product

specification [53].

Table 2.6: AsPRrs Vertical Accuracy and Recommended LIDAR Point Density [52]

Absolute Accuracy Resolution

Vertical Accuracy NVA, NVA, Density Spacing

Class Max. RMSE, 95%c1 Min. NPD Max. NPS
(cm) (cm) (cm)  (pls/m?) (m)
1.0 1.0 2.0 20.00 0.22
2.5 2.5 4.9 16.00 0.25
5.0 5.0 9.8 8.00 0.35
10.0 10.0 19.6 2.00 0.71
15.0 15.0 29.4 1.00 1.00
20.0 20.0 39.2 0.50 1.40
33.3 33.3 65.3 0.25 2.00
66.7 66.7 130.7 0.10 3.20
100.0 100.0 196.0 0.05 4.50
333.3 3333 653.3 0.01 10.00

By 2012, United States Geological Survey (UsGs) established a comprehensive LIDAR Base
Specification (LBS) [53]. In the current version of the LBs, products are stratified into QLs according
to three primary dimensions: resolution, consistency, and accuracy. Resolution is intended to convey
an estimate of product fidelity. However, the category is somewhat misnamed since the assessment
is primarily focused on sampling density. The LBs requires the computation of an aggregate NPs
(ANPs) and an aggregate NPD (ANPD) to support the resolution assessment. However, both of these
DQMs are actually measures of sampling, not resolution. Recall that, as discussed in Section 2.4,
sampling establishes a threshold on achievable resolution, but is insufficient for assessing the
actual achieved resolution within a product. Consistency accounts for both internal consistency
within a single swath of data as well as external consistency among multiple swaths of data.

Internal consistency is assessed by computing the smooth surface repeatability (sSrR) while external
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consistency is assessed by computing the swath overlap difference (sop). The measures are well
defined, but only for pair-wise assessment of swaths. Pair-wise inspection is appropriate for
systems that achieve their desired product sampling with minimal swath overlap, like traditional
LMAPD point scanning systems. However, scan patterns like an elliptical scan that result in greater
temporal difference between leading and trailing edges, newer sensor modalities like GMAPD, and
synthetic approaches like sFm all potentially achieve their aggregate density through significantly
more than two temporally-consistent inspections of the scene. Similarly, urban canyon collects
will frequently use orthogonally crossing passes to mitigate building occlusion. All of these
scenarios cause an increase in overlapping swaths resulting in a combinatorial explosion for
pair-wise assessments. The pair-wise assessment methodology also assumes that a viable surface
can be generated from a single look, which is impossible for approaches like sFm that rely on
serendipitous stereo to extract elevation measurements, and may only be possible at extremely
degraded scales for GMAPD sensors. Finally, as previously discussed, accuracy assessment has
the longest and most robustly validated development and relies on standardized assessment of
nonvegetated vertical accuracy (Nva) and vegetated vertical accuracy (vva) as published in the
National Standard for Spatial Data Accuracy [46]. The current usGgs product acceptance criteria

are summarized in Table 2.7.

Table 2.7: usGs Acceptance Criteria [55]

Resolution Consistency Accuracy
oL Spacing Density SSR, SOD, NVA, NVA, VVA,
Max. ANPS Min. ANPD Max. RMSD, Max. RMSD, Max.RMSE, Max.95%c1 Max.95% CI

(m) (pls/m?) (m) (m) (m) (m) (m)

o 0.35 8.0 0.03 0.04 0.05 0.098 0.15

1 0.35 8.0 0.06 0.08 0.10 0.196 0.30

2 0.71 2.0 0.06 0.08 0.10 0.196 0.30

3 1.41 0.5 0.12 0.16 0.20 0.392 0.60

In addition to the quality-stratifying measures, the LBS provides for inspection of product

intensity, completeness, and spatial distribution and regularity. However, assessment approaches
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for each are poorly defined.

The intensity specification only requires that intensity attribution be present in delivered
data and normalized to 16-bit integer values. Dynamic range stretches are expressly forbidden,
though this is somewhat problematic for GMAPD LIDAR and sFM point cloud data. For the former,
the signal from a direct ranging is explicitly boolean with no associated intensity for the return.
Instead, all intensity attribution is synthetically derived through ground processing. Without
a hardware-imposed clamp of strong signals, normalization may not behave as expected when
compared to linear-mode systems. For the latter, all elevation measurements are synthesized from
multiple view geometry. As a result, no intensity information is associated with the elevation
estimates. In all cases, no quality measure is made against the intensity data, which appears to be
a lapse in the current assessment criteria [75].

Data completeness accounts for both survey coverage and voids within the survey area.
Survey coverage is straight forward to determine post-collect and appears to be well defined.
However, void assessment is largely tied to the assessed or required ANPS/ANPD. Under the
specified assessment methodology, only first returns are considered. This specification poses
several issues: (i) it assumes that data is produced by a multiple-return system, (ii) it assumes that
only the primary reflective surface returns are important, and (iii) it assumes that all reflective
surfaces are represented by first returns. The first issue reveals an assumption that is violated
by cMaPD and sFM systems. For the former, all returns are first and only returns. For the latter,
all returns are synthetically derived. Both approaches are capable of establishing the primary
reflective surface, though, so shouldn’t be encumbered by the “first return” requirement. The
second issue reveals an assumption that discounts the 3D nature of LIDAR data. By only inspecting
primary surface returns, no assessment is made of ground recovery. Ground surface recovery
assessment is especially important for LIDAR point cloud data since it is often used to establish
terrain models. The final issue is potentially the most significant, though. It reveals an assessment
bias that assumes that LIDAR systems are primarily nadir-looking. This is an increasingly invalid

assumption as LIDAR systems incorporate off-nadir scan angles to recover vertical structures
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throughout the scan. This modification leads to voids in first returns when assessed from nadir.

Finally, the spatial distribution and uniformity assessment is demonstrably invalid [3].
The primary defect in the proposed assessment approach is due to the interaction between the
assessment raster and the point cloud samples. The current assessment approach also assumes
that complete sampling density is achieved in individual swaths. Again, this is an increasingly
invalid assumption as data providers turn to multiple swath coverage to achieve desired sampling
fidelity.

The usGs LBs has experienced widespread adoption. Several earlier guidelines have been
revised to refer back to the LBs and multiple international guidelines similarly refer to or are
derived from the 1Bs [52], [132]-[134]. Thus, developing DQMs that support a DQAF aligned to the
LBS appears to be justified. In summary, this means that based on the volume of literature, point

cloud pgwms should be established for the following elements:

surface representation
- sampling density
- sampling uniformity

— surface resolution

texture representation
— intensity resolution
- intensity dynamic range

— intensity SNR

data completeness
— inspection coverage (swath analysis)
- sampling coverage (void/occlusion analysis)

— classification attribution

data consistency
- internal consistency (elevation precision)

— external consistency (surface repeatability/variance)

data accuracy
— internal accuracy (swath-to-swath alignment)
— external accuracy (absolute geopositional accuracy)

— classification evaluation
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As previously discussed, accuracy [46] and coverage [57] boms have standardized and accepted
assessment methodologies. Confirming that all points adhere to a minimum classification attribu-
tion [57] is a trivial check. Furthermore, while not discussed elsewhere in this chapter, classifier
evaluation already has several established and accepted assessment methodologies [135] that
could be adopted as elements of a LIDAR point cloud pQAar. However, each of the remaining
proposed DQM elements requires further development. Chapters 3-5 provide a thorough treatment

of sampling strategies and assessment. Chapter 6 provides initial direction for the remaining

identified DQ elements.
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CHAPTER 3:
MESH-FREE SPARSE REPRESENTATION OF
MULTIDIMENSIONAL LIDAR DATA

This chapter closely examines information content assessment of LIDAR point data. The examina-
tion treats LIDAR point clouds as data bases of n-dimensional (nD) elements consisting of structural
information, represented by spatial coordinates, and embedded texture information, represented
by point attribution. Information content of each point is estimated by local neighborhood anal-
ysis and a salience measure is developed that represents potential information loss associated
with point removal. The salience measure is leveraged in a mesh-free point cloud simplification
approach that demonstrates the efficacy of the salience measure and the importance of considering

both attribution and structure as contributors to the information content of point cloud data [80]".

3.1 Background

Mapping and surveying LIDAR systems produce large amounts of true 3b data. Modern systems
sample several thousand to over a million points per second resulting in several million to billions
of point samples per product to be stored, processed, analyzed and distributed [31], [34], [35]-
Managing such large data sets presents a host of challenges to content providers. Production
strategies have been developed to mitigate data management issues inherent in processing large-
scale projects [136]. However, user demands for simultaneous wide-area coverage, high-fidelity

scene content, and low-latency access keep data sizing considerations at the forefront of content

"The content of this chapter is reproduced in part from the paper: K. L. Damkjer and H. Foroosh, “Mesh-free sparse
representation of multidimensional LIDAR data,” in 2014 IEEE International Conference on Image Processing, (Paris,
France, Oct. 27-30, 2014), IEEE Signal Processing Society, Piscataway, NJ, usA: Institute of Electrical and Electronics
Engineers, Oct. 2014, pp. 4682-4686, ISBN: 978-1-4799-5751-4. DOI: 10.1109/ICIP.2014.7025949. The IEEE permission
grant for reuse of this paper is provided in the Appendix.
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provider concerns.

The LASER point cloud (LAs) file format was developed to facilitate the exchange of LIDAR
data [37], [44]. Extensions to the LAs format (e.g., LASzip [137]) and generic exchange formats (e.g.,
Hierarchical Data Format version 5 (HDF5) [45]) further address data sizing concerns by offering
support for lossless compression with typical performance yielding files between 10 % to 20 % of
the original file size. However, even with an effective compression strategy, explicit data reduction
is often necessary to support users in bandwidth-limited and mobile device environments. It is
therefore necessary to establish approaches to intelligently reduce point data in a manner that
preserves information content. Current approaches focus primarily on preserving the surface
structures represented by the spatial coordinates [138]. We describe an approach that also allows
for the preservation of non-surface structures and includes point attribution in the salience

criterion.

3.2 Novelty and Relationship to Prior Work

Simplification of LIDAR survey data remains largely unexplored, however point-based surface
model simplification algorithms are well-established, especially with respect to the complementary
problem of surface reconstruction. We refer to the survey conducted by Pauly, Gross, and Kobbelt
[138] for an overview of point-based surface simplification. In this problem domain, there is an
underlying assumption that points in the cloud all belong to surfaces embedded in the spatial
dimensions. This assumption is frequently violated in LIDAR data where points often belong to
non-surface features. Furthermore, survey data is often attributed with additional information that
should be considered in the simplification process lest salient information be lost [136]. Regardless
of these limitations, we draw inspiration for our approach from mesh-free surface simplification
approaches.

Dyn, Iske, and Wendland [139] present an iterative sub-sampling approach supported by

local surface approximation. Their approach operates in a fine-to-coarse manner terminated by a
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desired point set size, 7. Their point selection is solely based on the input point cloud geometry,
P C R3, and a salience criterion, s: I C 2\ {@} — R. An important aspect of s is that it updates
with respect to the current subset 7 C & throughout the point removal process.

Yu et al. [140] present a similar approach that enforces a post-condition of a terminal
point set size and operates in an adaptive manner driven by point clustering and a user-specified
simplification criteria and optimization process.

While these approaches operate without generating an explicit mesh surface, they carry
forward the legacy of mesh-based approaches by limiting their analysis to spatial coordinates and
operating under the assumption that points locally approximate a surface. In contrast, natural
scenes are complex and contain significant points belonging to linear, planar, and isotropic struc-
tures. LIDAR survey data is also frequently attributed with intensity or color data, classification,
or other user-defined features. These additional dimensions may contain content that is salient to
end-user applications which suggests the need for a multidimensional approach to point removal.

The primary goal of this chapter, therefore, is to create a data sparsifying algorithm by
developing a multidimensional salience measure, s: &% — R, and therefore demonstrate that
such multidimensional approach produces sparse point representations that preserve salience.
Several approaches have been developed to identify salient points based solely on 3D spatial
coordinates. West et al. [141] introduce features based on structure-tensor—eigenvalue analysis
of local point neighborhoods. These feature descriptors have been enhanced to extract strong
spatially linear features to support scene modeling applications [142]. Methods have also been
developed to direct optimal neighborhood scale selection for feature attribution [143]. Next, we
generalize these attribute definitions to arbitrary dimensions to serve as the basis for measuring

salience.
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(d) Anisotropy

(e) Dimensionality (f) Dimension Label (g) Component Entropy  (h) Dimensional Entropy

Figure 3.1: Visualization of neighborhood features on section of Armstrong/Enderby data set from Applied
Imagery [144].

3.3 Local Statistic Attribution

Our salience measure is based on attributes defined by neighborhoods in arbitrary dimensions.
In this section, we establish our definition for locality in arbitrary dimensions and generalize
the definitions for previously-established features in the spatial domain to arbitrary dimensions.

Figure 3.1 illustrates the features we consider based on evaluation of 3D spatial point data.

3.3.1 Data Conditioning

Our attributes are based on principal components analysis which is sensitive to differences in
scale within the feature space. The source data should therefore be conditioned prior to analysis
so that different classes of attributes have approximately the same precision scale or measurement
resolution. Without this adjustment, insignificant variations within one dimension can easily
dominate significant variations in another. We perform this conditioning by first decentering the
data then normalizing each class by an estimate of the measurement resolution for the class. We
estimate the measurement resolution by computing the standard deviation within a flat response
region for each attribute in the class. We then take the minimum class attribute standard deviation

as the measurement resolution for the class.
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3.3.2 Locality

We consider the analysis of multidimensional points, x € R", where ./ is the set of native attributes
for the point and |.#'| = n is the dimension of the native feature space. All attributes are assumed
to be real-valued. While boolean and finite-class attributes may be simply represented by an
appropriate integer enumeration, our approach is unlikely to yield meaningful results with such
classes due to the conditioning issues mentioned previously. Our definition of a point cloud,
2 c R", then is simply a database of real-valued multidimensional points with consistent feature
space definition.

In most cases, it is desirable to restrict neighborhood definition to a subset of the available
native feature space. To support this capability, we establish a database of query points, @ c R™,
where ./ C .V is the search space of attributes for the determination of locality and |.#| = m is
the dimension of the search space.

We proceed by analyzing the neighborhoods of points about the query points, 7, € 2.
The neighborhoods are defined by an m-dimensional distance metric, §, between the query points,
q € @, and the data points, x € 2. For point cloud simplification, we treat each x € & as a query
location (i.e., @ = 92). This approach requires a reasonable all nearest-neighbor search algorithm
to be practical, that is one with complexity no worse than O (plog p) where p = |2|.

We investigated two neighborhood definitions that each present merits. The k-nearest
neighborhood, %qk, consists of the k closest points to q in & whereas the fixed-radius neighborhood,
74, consists of all points in & within the ball of radius r centered at ¢. Similar to Dyn, Iske, and
Wendland [139], we enforce the condition that q ¢ 74- This condition is imposed so that 7 can

be used to estimate the effects of eliminating q during the simplification process.

3.3.3 Structure Features

West et al. [141] and Demantké et al. [143] define several features for describing 3D point neigh-

borhoods. In this section, we generalize, and in some cases modify, their proposed features to
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Table 3.1: Features defined on 7

Name Equation
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support multidimensional analysis and interpretability. The generalized features are summarized
in Table 3.1.

West et al. [141] present six features that proved to be most applicable to their work in
segmentation and object recognition: omnivariance, anisotropy, linearity, planarity, sphericity, and
eigenentropy. Each of the features they describe are derived from the eigenvalues resulting from
the principal components analysis of the query neighborhoods, 7. However, while they define
the features with respect to the eigenvalues, ; > A, > --- > A,, we generally prefer to use the
singular values, o7 > 0y > -+ > 0;,, as demonstrated by Demantké et al. [143]. The sole exception to
this recommendation is the omnivariance feature which is used to meaningfully compare the total
variance of the neighborhoods to each other. Redefining the feature with respect to the singular
values, while still meaningful, would be more directly related to the standard deviation.

Linearity, planarity, and sphericity are closely related features that each represent the
concept of the neighborhood’s participation in subsequently higher dimensions. That is, the values

attempt to capture the degree to which the local neighborhood spreads into each of the respective
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dimensions [141]. We generalize this concept as dimensionality and define the family of features
by (3.4). We feel that it is worth considering the highest order dimensionality of the data set as a
unique feature as well and generalize the concept to isotropy as defined by (3.2). The complement
of this value, anisotropy, is thus easily understood and maintains a definition consistent with West
et al. as expressed by (3.3)

Eigenentropy is a feature based on the Shannon entropy [145], [146] of the principal
component eigenvalues. It describes the dimensional participation of the neighborhood. That
is, higher values imply greater participation across more of the available dimensions [141]. We
generalize this feature by modifying the logarithmic base to the number of dimensions, n, and
operating on normalized singular values, 6, instead of raw eigenvalues. We normalize the singular
values by the sum over all singular values for the neighborhood so that each value can be treated
as a probability that a point in the neighborhood has the respective eigenvector as its dominant
local coordinate axis. The resulting feature, which we call component entropy, describes the
unpredictability of the neighborhood in the np space and is expressed by (3.6).

Demantké et al. [143] introduce two additional features to support automated neighborhood
scale selection: dimensionality labeling and dimensional entropy . The dimension label is simply

the dimension that maximizes (3.4). We use this feature to establish an equivalence relation on

D x D,

x~y = d" (V) =d" (Wy) i (3.8)

This equivalence relation creates a partition on & that we leverage as part of our simplification
algorithm as described in Section 3.4. Dimensional entropy is very similar in concept to the
component entropy, with the exception that it describes the Shannon entropy [145], [146] of the
dimensionality feature. This feature describes the unpredictability of the dimension label feature

and acts as a figure of merit for the selected label.
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Algorithm 3.1: Multidimensional Point Cloud Simplification

Require: 9 C R"\{2},|9|=N,t€Zy
Ensure: 7 C 9,|9|=1
1: function MULTIDIMREMOVEPOINTS(Z, 1)
> Operate on & nondestructively
2: T «9D

> Partition into disjoint sets according to (3.8)

3: M 9/"’
4 while | 7| > rdo
> Identify next highest priority partition
5 d* < argmin min %
defl,...n}
6: Py — Py \ {min F.}
> Select least salient point for removal
7: x* « argmin s(x)
XEM 4+
8: ‘%d* <« ‘%d* N\ {x*}
9: T «— T \{x*}
10: end while
11 return 7

12. end function

3.4 Cloud Simplification Approach

In this section, we describe a general point cloud sparsifying algorithm, derive the multidimen-
sional salience measure, and describe the update operations that must take place per iteration
to enforce the correct dynamic behavior of the salience measure. Algorithm 3.1 describes our
solution that supports sparsifying points in arbitrary dimensions. Our objective is to remove least
salient points, while preserving the proportional distribution of dimension labels in the final point
set. We also wish to maintain the behavior that the algorithm computes a unique nested sequence
of subsets that can be used to define a multiresolution model.

The dimensional partitioning at Line 3 of Algorithm 3.1 is simply achieved by segregating
points according to equivalence relation established by (3.5). This partitioning only happens once
to establish the apparent local dimension of the point neighborhoods. Points are not moved out of

their initial partition, regardless of how their descriptive features evolve through the sparsifying
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process.

We simultaneously enforce the proportional sparsifying constraint and the nested subset
constraint by removing points from the partitions in an interleaved manner. We order the partitions
so that |#| > -+ > |.#,|. The pre-computed priorities for each partition are given by (3.9) where

M = maxgeqy,. mpl A dl-

:Vmel,..., |ﬂd|E (3-9)

In each iteration, we seek to select the point that minimizes the change of information
content in the point cloud. Dyn, Iske, and Wendland [139] use a salience measure that increases in
value as points in the neighborhood diverge from the local fit of a smoothed surface. Obviously,
we are unable to use a similar model for salience since our measure must be defined for arbitrary
dimension. However, recall from Section 3.3.3 that (3.6) describes the unpredictability of the
neighborhood and acts as a measure of information content in the local neighborhood. We
therefore select this feature, which is defined for arbitrary dimension, as the basis for our salience
measure.

To estimate the change of information content caused by the removal of a point, we first
establish a baseline estimate. The baseline, H; , is based on the component entropy of the initial

point neighborhoods as described by (3.10).
HO',O (x) = H, (%x U {x}) (3.10)

We estimate the change of information content caused by the removal of a point as the
maximum absolute deviation of the neighborhood component entropy from the component
baselines as described by (3.11). This measure acts as the salience function for our sparsifying

process.

s(x) = max |Hy0 () — Hy (7)) (3.11)

In each iteration, the point, x*, that minimizes (3.11) is selected for removal. To ensure that

removed points continue to influence the sparsifying process, we maintain a constituency, €y, for
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each x € 9. The constituency sets serve an identical function to the test sets described by Dyn,
Iske, and Wendland [139] and are updated in a similar manner.

The constituency contains the set of points represented by x. Initially, each point represents
only itself (i.e., €y = {x}). When a point, x*, is selected for removal, its constituency, Gy, is
distributed among its neighbors’ constituencies, {%y Y €T } by selecting the closest y € 7/
as a representative for each z € €.

In addition to updating the constituencies, we must also update the neighborhoods con-
taining the removed point to make sure that it does not continue to influence estimates of the
current point cloud state. The set of back-references to the neighborhoods containing each point,
By = {Wy tx €7, } are maintained to keep this update operation efficient. The neighbor-
hoods containing the removed point replace it with a new closest point from their neighbor’s
neighborhoods. That is, from the set

U V2N ({x*}u %y) )

., (3.12)

If the set described by (3.12) is empty, a closest point from the current set of remaining points is
selected instead.

Finally, the salience measures for each x € 7+ u B+ are updated according to (3.11).

3.5 Results and Discussion

We have implemented our approach using vantage point tree [147] for the spatial indexing structure
in support of all nearest neighbor searching and splay tree [148] for managing the salience heap.
The selection of these data structures maintains asymptotic complexity equivalent to the approach
proposed by Dyn, Iske, and Wendland [139] while compensating for higher dimensional data.
To illustrate the effectiveness of our approach, we first applied our algorithm to the
standard Dragon data set from the Stanford 3D scanning repository [149] which contains only
spatial coordinates with no additional attribution. Figure 3.2 shows results for data sparsified to

75 %, 50 %, 25 % and 10 % of the original point cloud size, || = 435 545. This test case demonstrates
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S m e i

(a) 75 %, H, = 0.7369 (b) 50 %, H,, = 0.7367 (¢) 25%, H, ~ 0.7384 (d) 10%, H,, = 0.7393

Figure 3.2: Data output by our approach on Dragon from the Stanford 3D Scanning Repository [149]
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Figure 3.3: Least salience and mean baseline entropy trends during simplification of Dragon [149] to 1 % of

the original point cloud size

that our approach produces a sparse representation of the original data that preserves features that

are salient with respect to representing the original surface. Figure 3.3 illustrates the behavior of the

algorithm during the sparsifying process. The salience measure does not increase monotonically

throughout the sparsifying process since the point removal and update process does not enforce

any guarantees on the entropies of the affected neighborhoods. However, Figure 3.3a illustrates that

the least salience trend increases monotonically throughout the sparsifying process. Figure 3.3b

illustrates the effect of our salience measure on the mean baseline entropy for the model. Since

we define salience to minimize change in entropy, the mean entropy remains very flat through
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() 100 % (b) 10 % © 1%

Figure 3.4: Mesh reconstruction from data output by our approach on Vellum Manuscript from the Stanford
3D Scanning Repository [149]

most of the sparsifying process and in fact increases slightly as redundant points are removed.
However, there is a point beyond which significant points are removed and mean entropy drops
sharply as a result. For the Dragon test case, this occurs once approximately 90 % of the original
points have been removed.

Next, to illustrate the effectiveness of our approach on multidimensional data, we applied
our algorithm to the Vellum Manuscript data set from the Stanford 3D scanning repository [149]
which contains spatial coordinates with color attribution per point. Figure 3.4 shows mesh recon-
structions of data sparsified to 100 %, 10 %, and 1 % of the original point cloud size, |2| = 2 155 617.
This test case demonstrates that our salience measure generalizes to multidimensional data. The
example illustrates preservation of fine features in the np data set up to high levels of sparsity.
The thin red margin lines are visible and page edges are preserved even when data is sparsified
to just 1 % of the original data size. Our approach is lossy, though, and significant degradation is
noticeable at the 1% level. However, we are able to create a very faithful reconstruction of the

data set with just 10 % of the original data.
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3.6 Conclusion

In this chapter, we developed extensions of established 3D features to arbitrary dimensions and
presented an application to sparse representation of point clouds. We developed a point salience
measure that represents potential information loss due to the point removal and demonstrate that
this measure can be leveraged to significantly reduce the population of points in a cloud while
minimizing information content loss. The cloud simplification is achieved through careful removal
of points and redistribution of information potential from point constituencies to representatives
on deletion.

The salience estimation approach may be further improved by better selecting the initial
neighborhood sizes using an approach such as the one proposed by Demantké et al. [143]. Further-
more, there are other potentially interesting applications of the extended features that warrant
investigation, for example as features that support correlation and registration algorithms or
automated feature extraction.

However, we recognize that several factors prevent the general adoption of the developed
simplification method. Specifically, the simplification method is computationally expensive due
to frequent update operations on the salience heap, the algorithm loop-dependence prevents
parallelization, and surface reconstruction is challenging for heavily sparsified clouds unless
implicit point connections are codified and preserved in some way.

The limiting factors described above point to the need to develop alternative efficient
sampling strategies that consider the implications of the salience measure developed in this
chapter. Specifically, the presented simplification approach demonstrates the importance of both
point structure and attribution to the information content of the point cloud data. As a result,
efficient sampling strategies for point clouds must consider information content from attribution

in addition to the information content provided by the spatial arrangement of the points.
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CHAPTER 4:
LATTICE-CONSTRAINED STRATIFIED SAMPLING FOR POINT
CLOUD LEVELS OF DETAIL

In Chapter 3, we developed of a method for estimating the salience of point cloud elements and
demonstrated that the developed salience measure can be leveraged to significantly reduce the
population of points in the cloud while preserving information content. The resulting simplified
point cloud represents an efficient, sparse, nonuniform, sampling derived from the baseline,
densely sampled, data where points are preserved in regions of high local entropy.

In this chapter, we build on these results to inform the design of an efficient, uniformly
constrained, stratified sampling approach that preserves specific reconstruction guarantees. We
leverage the developed sampling method to perform point cloud LoD generation and provide
general guidance for efficiently sampling scenes to maximize information potential in point cloud
products [81]".

Previously, the Petersen-Middleton theorem [110], [150] has been leveraged to establish
sampling and reconstruction strategies in parallel domains including seismology [151], computed
tomographic reconstruction [152], and periodic nonuniform sampling [153]. In this chapter, we
apply the Petersen-Middleton theorem [110] to establish a strategy for sampling point clouds to
generate LoDs which seek to optimally enforce one of the following constraints (i) resample to
a desired inter-point spacing; (ii) resample to a desired point density; (iii) resample to a desired
number of points; (iv) resample to a desired texture resolution; and (v) resample to a desired

spatial resolution. Preliminary analysis of our approach was presented via poster at the ASPRs

"The content of this chapter is reproduced in part from the article: K. L. Damkjer and H. Foroosh, “Lattice-
constrained stratified sampling for point cloud levels of detail,” 1EEE Transactions on Geoscience and Remote Sensing,
Pp- 1-15, 2020, ISSN: 1558-0644. DOI: 10.1109/TGRS.2020.2967880. The IEEE permission grant for reuse of this article
is provided in the Appendix.
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2019 Annual Conference [154].

The general organization of this chapter is as follows. Section 4.1 describes our sampling
approach. Section 4.4 discusses approaches for representing the point cloud LoDs. Section 4.5
discusses our sampling approach for processing single-photon and GMAPD LIDAR. Section 4.6
describes our evaluation approach. Section 4.7 summarizes the comparison of our approach to
the two most common point cloud sampling methods: random sampling and rectangular lattice

sampling. Section 4.8 is a summary.

4.1 Sampling Approach

The Petersen-Middleton theorem [110] provides the conditions for perfect reconstruction of
wavenumber-limited functions from samples on regular discrete lattices. Similar to the Nyquist-
Shannon sampling theorem, the conditions for perfect reconstruction are seldom realized in
real-world applications; however, the theorem still provides practical guidance for establishing
optimal sampling lattices for an np field to an objective wavenumber limit. Indeed, it is this theorem
that provides the result that optimal sampling for 2D wavenumber-limited isofunctions is achieved
with a hexagonal lattice and that optimal sampling for 3D wavenumber-limited isofunctions is
achieved with a Bcc lattice. These two results inform the selection of optimal sampling lattices for
objective texture and spatial resolutions, respectively.

Using the same approach as Petersen and Middleton [110] to determine optimal sphere
packings in the spatial domain versus the spectral domain provides a means for selecting lattices
that optimize point spacing and point density metrics instead of texture and spatial resolution.
Furthermore, while there are infinitely many lattices that could be used to sample 3D spaces, we
find that only three appear in the context of optimal sampling lattices in R>: (i) the sc lattice;
(ii) the rcc lattice; and (iii) the Bcc lattice [111]. The sc lattice is often considered to be the natural
choice for a sampling lattice since it establishes a Cartesian coordinate system. However, the Fcc

and Bcc lattices arise as alternative sampling lattices as a result of dense sphere packing in the
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( 0, g7 'S) ( 0: g{ 'S)

(a) sc: square, identical (b) Bcc: irregular hexagon, ABAB (c) rcc: regular hexagon, ABCABC

Figure 4.1: Bases for (a) sc, (b) Bcc, and (c) Fcc lattices transformed for sampling point cloud data. Central

sites are connected to NNs. Planar raster type and arrangement detailed.

spectral domain, and the subsequent transformations to the spatial domain. The three lattices and

their respective coordinate systems are illustrated in Figure 4.1.

4.1.1 Basis Selection
A lattice (A) that spans the n-dimensional real vector space (R") is given by

A=FB)={Bc : ceZ"ndet(B)#0}

where

(4.1)

(4.2)

is the matrix of basis vectors known as the generating or sampling matrix. The sampling matrix

establishes a hypercubic coordinate reference frame for the vector space spanned by A, where

the basis vectors, vy, ..., v, are the frame axes and coordinates, ¢ € Z", define the sample sites.

The sampling matrix and its inverse thus represent the changes of basis between the vector space

representing the sampling reference frame and the vector space representing the world reference

frame.

The sampling matrix for each of the lattices we use are straight-forward to establish directly.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();





The sc sampling matrix
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establishes adjacent sample sites at adjacent cube corners, the Fcc sampling matrix
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Vo e e (4.5)

establishes adjacent sample sites at adjacent cube body-centers. While there are infinitely many
ways to orient and scale the basis vectors for each sampling lattice, we take the approach of
ensuring two of the basis vectors span the Cartesian xy-plane, which is typically parallel to the
ground plane for LIDAR data sets. Furthermore, we normalize the basis vectors to establish a
normal basis for the vector space so that a default scaling will preserve the same interpoint sample
spacing in each sampling lattice. For the sc and rFcc sampling matrices, we further constrain the
basis vector arrangement by aligning one basis vector with the x-axis, which typically points
in the easting direction for LIDAR data sets. This means that the sc sampling matrix is simply
identity. The Bcc basis vectors, however, do not form a regular tiling of the xy-plane. Thus, instead
of aligning a basis vector with the x-axis, we choose to orient the basis vectors so that they are
reflexively symmetric about the y-axis, which typically points in the northing direction for LIDAR

data sets. The final set of fundamental sampling matrices that we use are thus
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and
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4.1.2 Spacing Scale Factors

With the sampling matrices established as described in Section 4.1.1, lattice sites are arranged
as groups of planes in R3. The sc lattice forms square lattices within the planar groups. The
groups are arranged with lattice sites located directly above each other with a separation equal to
the minimum distance of the lattice. Both the Bcc and rcc lattices have planar groups that are
separated by a factor of V6/3 of the minimum distance of the lattice. The Bcc lattice sites form an
irregular hexagon lattice within the planes and the planar groups alternate in an ABAB sequence.
The rcc lattice sites form a regular hexagon lattice within the planes and the planar groups are
arranged in a repeating ABCABC sequence.

This arrangement of basis vectors allows us to independently control the sampling intervals
in the horizontal and vertical directions, denoted by r, and r, respectively. Since each fundamental
sampling matrix is designed so that the first two basis vectors span the xy-plane, the fundamental
vertical separation between planar groups is always given by the sampling matrix element bs 5.

Thus, the lattice basis is scaled to achieve the desired sampling rates with the matrix

m O 0
s=]0 ™ 10 : (4.9)
0 0 gfv

To achieve a uniform scaling of the sampling lattice, we establish the sampling interval

with r, and automatically compute the desired vertical separation of planar groups as
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ry < bssm,. (4.10)

Notice that there is a significant caveat when deviating from a uniform scaling of the
sampling lattice. Setting the vertical sampling interval smaller than (4.10) will result in an effective
horizontal sampling that is finer than the horizontal sampling constraint for any non-horizontal
surface with slope greater than :—V This result implies that the effect is more likely to appear when

h
rv < tp.

4.1.3 Characteristic-Preserving Scale Factors

Next, we establish a set of scale factors for each lattice that allows us to target a specific charac-
teristic to preserve during the point cloud sampling. The scale factors we compute preserve the
following characteristics: (i) interpoint spacing: scales the sampling lattices so that the interpoint
distance between nearest-neighbors (NNs) match; (ii) ground-plane sampling density: scales the
sampling lattices so that the sampling densities of the xy-plane match; (iii) number of sample sites:
scales the sampling lattices so that the sampling densities (thus, the expected number of sample
sites) in R® match; (iv) texture resolution: scales the sampling lattices so that the circular support
regions in the spectral domain match; and (v) spatial resolution: scales the sampling lattices so
that the spherical support regions match in the spectral domain.

To preserve the interpoint spacing between the sampling lattices, the magnitudes of the
basis vectors must be scaled to match. Since we establish the fundamental sampling matrices with

normalized basis vectors, the spacing-preserving scale factor is simply the multiplicative identity
si=1. (4.11)

The sampling density of a lattice is computed from the hyper-volume of its fundamental

parallelepiped

d(A) = |det (B)| (4.12)
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i.e,, the hyper-volume of the parallelepiped representing the region enclosed by the basis vectors.
By definition, there is exactly one sample site within each fundamental parallelepiped region,
which implies that the sampling density is simply the inverse of this volume

1

PNy (4.13)

Thus, to preserve the sampling density in R?, the scale factor is set to normalize this density
5, = Jd(A). (4.14)

To preserve the sampling density in the xy-plane between the sampling lattices, we
leverage the fact that we oriented the sampling matrices so that two of the basis vectors span

the xy-plane. This means that we can use the same density normalization approach as above, but

restricted to just the first two basis vectors

Sd = \/|[B]3,3 ; (4.15)

where [B]s 5 is the (3,3) minor of the sampling matrix.

Table 4.1: Feature Preserving Scale Factors for Sampling Lattices

Preservation Strategy Notation sc Fcc BCC

Spacing S; 1 1 1
D . ) Y108 V18
ensit s
Y 4 3 2
{108
Samples s 1 {2
p » 5
. 23 32
Texture Resolution s 1 = -
. . J6 J6
Spatial Resolution S 1 - -

The final two scale factors are selected to preserve the radial support for wavenumber-

limited functions in the spectral domain without aliasing and are therefore related to the reciprocal

lattice
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r=%(B)=2(B") (4.16)
where
B= [171 17,1] (4.17)

is the dual space sampling matrix. The scale factors are defined by the diameter of the largest np
ball constrained to a Voronoi region of the lattice. This distance is given by the distance between
the NN spectral repetitions which is simply the minimum magnitude of the dual space basis
vectors. Thus, to compute the scale factor that preserves texture resolution in the xy-plane, we

consider only the upper-left 2 x 2 submatrix
B(3,3) = [u u)] (418)

resulting from the elimination of the third row and column from the matrix B. We then compute

the minimal magnitude of the basis vectors for the dual space
50 = min|i],. (419)
The scale factor that preserves the spatial resolution in R? is similarly computed as

5o = min il (4.20)
Table 4.1 provides the values of the scale factors described above for the sc, Fcc, and Bcc lattices.

Table 4.2: Discrete Lattice Samples Relative to sc Lattice (A%)

3D 2D
Preservation Strategy = Fcc BCC FCC BCC
Spacing +41.42 42990 +1547  +6.07
Density +13.98  +18.92 - —
Samples — — -8.35 —10.91
Texture Resolution -8.14  +887 —1340 —5.72
Spatial Resolution -23.02 -29.29 -23.02 -29.29
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(a) sc, 26: 6 face, 12 edge, 8 corner (b) BCC, 14: 8 face-1, 6 face-2 (c) Fcc, 12: 12 face

Figure 4.2: Eight unit cells of (a) sc, (b) Bcc, and (c) Fcc lattices outlined in dotted gray. The Voronoi cell of
each central site is outlined in black. Adjacent sites are colored according to type: face-1, red; face-2, cyan;
edge, green; corner, blue.

(a) sc: cubic (b) BCC: bitruncated cubic (c) Fcc: rhombic dodecahedral

Figure 4.3: Voronoi tesselations of the (a) sc, (b) Bcc, and (c) Fcc lattices. Individual cells colored randomly
to illustrate structure.

The volumes represented by each sample site are given by the Voronoi tessellation of
the lattice as illustrated in Figure 4.2. Since each sample site is identical within A, each volume
is an identical unit cell that has the property of being a space-filling polyhedron as illustrated
in Figure 4.3. By comparing the relative sizes of the representative volumes under the different
scaling factors, we can establish the expected relative sampling efficiency between the sampling
lattices. Table 4.2 summarizes the expected relative number of samples for each preservation

strategy using the simple cubic lattice as a reference. This table illustrates that, as predicted
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by the Petersen-Middleton theorem, the Bcc lattice provides the most efficient sampling that
maintains spatial resolution; however, resolving features in texture—like changes in intensity
within the ground plane—is less efficient than the rcc lattice. The Fcc lattice, while not as efficient
at maintaining spatial resolution, is the only lattice considered that provides improvements in

sampling efficiency for both spatial and texture resolution.

4.1.4 Preliminaries

Algorithm 4.1: k-Nearest Neighbors Interface

Require:
> A database of points, 9, spatially indexed with a distance metric, d(a, b)
> A query point, q
> A neighborhood size, k € N, k < ||
Ensure:
b N —{AdCD : || =kxed,x’ e D\NA)(d(x,q) <d(x',q))}
> Run time: O (log |9|)

1: function KNN(9, ¢, k)

2: return
3: end function

Algorithm 4.2: Radially-Nearest Neighbors Interface

Require:
> A database of points, 9, spatially indexed with a distance metric, d(a, b)
> A query point, q
> A neighborhood reach, r € R
Ensure:
b N —{AdCD: (Vxed,x e D\)d(x,q) <r<d(x’,q)}
> Run time: O (log |9|)

1: function RNN(Z, q, 1)

2: return ./
3. end function
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Our sampling algorithms assume the existence of nearest-neighbor search algorithms in
metric spaces with a run-time complexity of no worse than O (log n). Specifically, we require a
k-nearest neighbor (k-NN) search with a Euclidean distance metric for both nearest-center (Nc)
sampling and mass-point (MP) sampling. Additionally, mp sampling requires a radially-nearest
neighbor (-NN) search with a Chebyshev distance metric. We assume that the points are spatially
indexed with the appropriate distance metric and that the index structure provides appropriate
interfaces for the respective searches. Algorithm 4.1 details the behavior of the k-NN search, while
Algorithm 4.2 details the behavior of the r-NN search.

Any metric tree or binary space partitioning tree data structure can satisfy the requirements
of the search algorithms. For our implementation, we leveraged vantage point trees [147] for the

spatial indexing data structure.

4.1.5 Nearest-Center Sampling

The first algorithm we develop is Nc sampling. This approach most closely matches uniform
sampling on a regular discrete lattice with the added constraint that all samples belong to the
set of observations instead of to the set of lattice sites. Algorithm 4.3 details Nc sampling which
proceeds by first transforming all points into the sampling coordinate frame.

Within this reference frame, the lattice sites associated with each occupied Voronoi cell are
computed by performing a component-wise rounding of the point coordinates. Next, initial sample
candidates are selected by identifying the points closest to each query lattice site. However, this
process does not guarantee that the candidates occupy the same Voronoi cells as their respective
lattice sites. Candidates appear in Voronoi cells adjacent to the query lattice site whenever two
conditions are met. First, the query cell must be occupied only by points in “corners” of the cell.
That is, when the occupying points fall outside the sphere inscribed within the cell (recall that
within the sampling reference frame, all Voronoi cells are cubes). Second, at least one point in

an adjacent cell must be within the sphere circumscribing the cell and closer to the lattice site
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Algorithm 4.3: Nearest-Center Sampling

> Select points from point cloud, % nearest to lattice sites in £ (B)
1: function NcSAMPLE(Z B)
> Change points to sampling coordinate frame

2 P—{Bl'p:peP}

> Identify occupied Voronoi cells of the lattice
3: € « {COMPONENTWISEROUND(x) : x € %5}

> Spatially index points for efficient search
4 D¢ < EUCLIDEANINDEX(H)

> Identify sample points
5: S«
: for all c € €do
> Find the closest point to the lattice site
7: s < KNN(Dg, ¢, 1)

> Ensure adjacent sites are not aliased by the candidate

8: if ¢ = CoMPONENTWISEROUND(s) then
9: § «— S u{Bs}

10: end if

11: end for

12: return &

13: end function

than any point within the cell. In this case, the closest point to the lattice site will appear in
an adjacent cell, thus acting as a form of aliasing. Checking for this condition is achieved by
ensuring that the query lattice site and the lattice site associated with candidate are identical.
If not, then the candidate is rejected and the Voronoi cell is unrepresented in the final sample
set. The final samples are produced by transforming the selected candidates back to the world
coordinate reference frame. This final step is unnecessary if selected points can be identified by

other means, such as a globally unique identifier.

4.1.6 Mass-Point Sampling

One obvious limitation of the Nc sampling approach is that an observation must be sufficiently

close to the lattice site, without falling outside the Voronoi cell, to be selected as a representative
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Algorithm 4.4: Mass-Point Sampling

> Select points from point cloud, % nearest to Voronoi cell mass centers in £ (B)
1: function mpSAMPLE(Z B)
> Change points to sampling coordinate frame

2 P—{Bl'p:peP}

> Identify occupied Voronoi cells of the lattice
3: € « {COMPONENTWISEROUND(x) : x € %5}

> Spatially index points for efficient search
4 D¢ < EUCLIDEANINDEX(H)
5 D < CHEBYSHEVINDEX(%)

> Identify sample points
6: S <
7: for all c € €do
> Find points in the Voronoi region about the site
8: N «— ’RNN(D, ¢, 1/2)

> Compute the center of mass for the region
9: m <« AVERAGE(/)

> Find the closest point to the mass-point
10: s < KNN(Zg, m, 1)

> Ensure adjacent sites are not aliased by the candidate

110 if c = CoMPONENTWISEROUND(s) then
12: S <« S u{Bs}

13: end if

14: end for

15: return &

16: end function

sample. In the sampling coordinate reference frame, only 7/s = 52.36 % of the volume of the
Voronoi cell matches this constraint. Cells are not sampled when observations are biased into the
“corners” of the cells which happens most often for fine linear features and along edges of bodies.
By changing the query location from the lattice site to the center of mass of observations within
the Voronoi cell, the number of unrepresented occupied cells is reduced. Algorithm 4.4 illustrates
the modifications required for performing mp sampling,.

The primary modifications that are required to support mp sampling are an additional

spatial index to enable searches under a Chebyshev distance metric and an additional step to
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compute the center of mass of observations within each Voronoi cell. The Chebyshev metric is
leveraged to quickly identify all observations contained within the Voronoi cell since the cells
are balls of radius !/2 under this metric in the sampling coordinate reference frame. Otherwise,

sampling proceeds exactly as Nc sampling, including the aliasing check.

4.1.7 Contour-Line Sampling Artifact and Mitigation

A consequence of allowing samples to float within the Voronoi cells is the appearance of a visual
artifact that we named density contours. This artifact is a post-aliasing that appears when rendering
point clouds to visual displays. Since no surface is perfectly smooth and no ranging system is
infinitely accurate, there is always a “thickness” for every surface observed by LIDAR systems.
If the vertical spread of the surface—due to either texture or measurement uncertainty—is not
entirely contained within a single sampling layer, multiple vertically-adjacent sites will generate
samples leading to the appearance of the contour lines. This artifact is not unique to our sampling
approach. In fact, if we performed uniform discrete sampling, this artifact would manifest instead
as the familiar “stair-step” aliasing associated with rasterization.

While the artifact is purely a visual anomaly, similar to a moiré pattern, its appearance
is nonetheless unexpected and may thus be detrimental to exploitation and analysis of point
cloud data. We therefore developed an approach to mitigate the appearance of density contours
as detailed in Algorithm 4.5 that can be applied as a post-sampling process.

First, observe that the density contour artifact appears where sample points are spaced
closer than predicted by the lattice constraint; that is, where the points appear to be an alias
of each other. We can thus simply check whether a sample point is a part of a density contour
artifact by searching for any additional samples within a ball of radius one half in the sampling
coordinate reference frame. If any other samples are identified, the point is removed from the set
of samples. This process is repeated for all samples. Pathological point removal is not possible

because of the lattice constraint used to perform the original sampling. Figure 4.4 illustrates the
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Algorithm 4.5: Density Contour Mitigation

> Mitigate the appearance of density contour artifacts that arise from sampling
point cloud, & under the constraints imposed by & (B)
1: function M1TIGATECONTOURS(Z B)
> Change points to sampling coordinate frame
2 Fg<{B'p:peP}

> Spatially index points for efficient search
3 g < EUCLIDEANINDEX(S%)

> Initially, all candidates belong to the sample set
4: S« P

> Iteratively remove aliasing candidates
5: forall s € §do
> Find points in cell centered at candidate
6: N « RNN(Zg, Bls, 1/2)

> Remove candidate if it aliases a sample

for alln € /do

7
8: if Bn € § then
9: S « §\{s}

10: break

11: end if

12: end for

13: end for

14: return &

15: end function

appearance and mitigation of the density contour post-aliasing artifact under both nc and mp
sampling approaches.

The primary detriment of our mitigation approach is that it is order-dependent and thus
implicitly serial. We apply a seeded random shuffle to point ordering to avoid introducing a
sampling bias through the mitigation process while maintaining repeatable results. However,
we recognize the implicit limitations of order-dependent processing. While we recognize this

draw-back, we defer further improvements to the mitigation approach to future work.
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(a) Nc sampling with contours. (b) mp sampling with contours.

(c) Nc sampling with mitigation. (d) mp sampling with mitigation.

Figure 4.4: Density contours (above) and mitigation (below) for nc (left) and mp (right) sampling.

4.1.8 Novelty Versus Voxel-Based Approaches

With the primary sampling approach defined, we can now describe how our approach differs
from rectangular voxel-based representations similar to the approach proposed by Stoker [155].
First, the lattice constraints are a generalization of a rectangular voxel grid with specific lattices
providing key benefits for specific applications as detailed in Section 4.1.3. Second, the LoD points
are down-selected from an input cloud instead of resampled to lattice sites. This distinction may
have important implications for propagation of per-point metadata. In fact, our sampling approach
would be nearly identical to voxel representations if we simply generated the set of occupied

voxel cells and operated only on rectangular lattices.
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4.2 Level of Detail Generation

Algorithm 4.6: Level of Detail Generation

> Select points from point cloud, 9 to participate in each Lop § € 7 as constrained
by lattice bases %
1: function GENERATEDETAILLEVELS(Z B)
> Ensure the LoD set is empty

2: H @

3: for all B € & do

4 S8 « SamprLE(Z, B)
5: H —H u { c§)}

6: end for

7: return 7

8: end function

The lattice-constrained sampling (Lcs) and contour mitigation approaches comprise the
sampling methods leveraged for generating each point cloud Lop which proceeds in a straight-
forward manner as detailed in Algorithm 4.6.

Essentially, each LoD is an independent sampling of the input point cloud. We do not base
subsequently coarser LoDs on the immediately preceding finer level because the scales of the
lattice constraints between LoDs, as described by (4.9), are usually not integer multiples of each
other. This decision has direct implications on the LoD representation as described in the next

section.

4.3 Sampling and Level of Detail Generation Algorithm Complexity

The overall algorithm complexity of both the Nc and mp sampling approaches are very similar.
Given an input point cloud (%), for n « ||, the conversion to the sampling coordinate frame
and identification of occupied lattice cells (€) both take O (n) time since the operations involve
only simple multiplications and comparisons. Spatially indexing the input point cloud takes

0 (nlogn) time on average when metric tree data structures are used as the indexing structure.
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For m « |®)|, the identification of sample points takes @ (mlogn) time on average since locating
the representative point for each occupied lattice cell involves a @ (logn) search of the spatial
indexing structure. This means that, in general, LoD generation is expected to be no worse than
O (nlogn) on average even when m — n.

Generating multiple LoDs is accomplished in a straight-forward way by making multiple
calls to the underlying sampling function as described in Section 4.2. In this case, the overall time
complexity depends largely on the number of LoDs being generated (p). However, if each LoD
results in a fixed magnitude reduction factor (f), then the total number of LoDs required before
the LoD cardinality is reduced to 1 is just log¢(n). Thus, the overall complexity is expected to be

O (pnlogn) with a practical limit of O (n log2 n).

4.4 Level of Detail Representation

Once the LoD point sets are identified, a decision must be made for how to store the point sets.
Several obvious strategies include (i) separating LoDs into independent files, (ii) segregating LoDs
into independent sections within a file, and (iii) labeling each point with the LoDs they represent.
We can make a few simplifying assumptions to help trade the various storage schemes. If
we assume a single surface with uniformly distributed points, then the NpD for the base point
cloud is estimated by
n
Pnom = e (4.21)
where n is the number of points in the base point cloud and A is the area covered by the point
cloud. In practice, this formula tends to yield inflated density estimates since there are often
multiple surfaces over at least part of the area covered for natural scenes. However, it establishes
a reasonable estimate for the purposes of trading LoD representations.
We can similarly leverage (4.13) to estimate the expected point density for each LoD, Z,
based on its sampling lattice basis, B. Recall that since we have assumed that a single surface is

being sampled, we must use the two-dimensional sampling density estimate
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1
P = ‘ (4.22)

[33]3,3‘
Given the assumption that points in the base point cloud are uniformly distributed over
the sampled area, the estimated probability that a point, p, is selected to represent a LoD, Z, is

given by

Pr

Pr(¥)=Pr(pe )= (4.23)

nom
This estimate serves as the foundation for trading the various proposed storage schemes.
First, if LoDs are stored in separate files or file regions, then the total expected number of

points to be stored is given by

L
Cseg =1 Y Pr(Z), (4.24)
i=1

where cge, is the expected total point count for the segregated schemes and L is the total number
of LODs.
Otherwise, if points are tagged with the LoDs they represent, then the total expected

number of points to be stored is given by

L
Crag = 1 (1 ~T[a-er (31-))) , (4.25)
i=1

where ci,o is the expected total point count for tagged schemes. With this approach there is a
potential savings when points participate in multiple LoDs. In fact, the optimal case is realized
when all of the coarser LoDs are subsets of the finest LoD. There is no requirement for this
constraint, though, and it is not expected in general. Furthermore, observe that as the probability
of a point participating in any single level increases, ¢,y converges to n.

Given the observations above for tagged representations, we can make a general recom-
mendation that when the finest LoD sampling rate is close to the input point cloud Nps, the tagged

scheme is likely to result in better storage efficiency. When the LoD sampling rates are all very
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coarse with respect to the input point cloud, there is a low probability that points will participate
in multiple LoDps which implies a segregated scheme will result in a better storage efficiency.

More formally, file sizes are expected to be dominated by point records. Thus, the choice
between segregated and tagged representations amounts to identifying when redundancy across
LoDs makes it more advantageous to use a larger per-point record format. We generally assume
that the per-point LoD tag, t, is a byte-aligned bit-field where each byte allows eight LoDs to be
tagged per point. Thus, a minimum size for ¢ can be established as

L
tmin = [g} . (4.26)

Ignoring header data, we can establish a test variable

beseg

X=—, (4.27)
b+ tmin)ctag

where b is the base per-point record format size, to test for which scheme is expected to be more
efficient. When x < 1, the segregated scheme is expected to be more efficient. Alternatively, when

x > 1, the tagged scheme is expected to be more efficient.

4.5 Geiger-Mode and Single-Photon LIDAR Processing

In some sensing modalities, specifically single-photon sensitive systems like GMAPD LIDAR, the
LOD generation can be extended to sampling the base, pre-filtered, point cloud to establish the
query points for filtered processing. This approach leads to less aliasing in LoDs than sampling
from a pre-filtered, though potentially densely sampled, point cloud. As explained in Section 4.4,
this approach will consequently lead to larger point cloud sets since points that would otherwise
be simply support may become query points and the potential for redundancy between LoDs

decreases.
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4.6 Experiments

To evaluate our sampling methods, we leveraged NPs and NPD metrics calculated using approaches
similar to those developed by Naus [96]. The analysis involves computing NPs via Delaunay
triangulation of reflective surface points or ground surface points and NPD via the dual Voronoi
diagram.

We made a slight modification to the Nps analysis proposed by Naus [96] to evaluate the
entire population of Delaunay edges instead of just the average edge length per Voronoi cell. We
made this decision because—especially in the sc and Bcc cases—the distribution of Delaunay edge
lengths is often bimodal which has the effect of skewing averages. The root cause of the modes is
easy to visualize, especially in the sc case. The sc case is a degenerate condition for Delaunay
triangulation where a hypotenuse edge must be added for every pair of edges connecting NN
points. In this case, it is expected that there are half as many hypotenuse edges as NN edges which
is a very significant portion of the population. The Bcc case is non-degenerate, but does result in
an expected bimodal distribution due to the irregular shape of the hexagonal lattice cells oriented
parallel to ground. In this case, however, the two modes are much closer to each other and more
difficult to separate.

To evaluate our level of detail generation approach, we first compare Lcs to the two
most common point cloud sampling methods: random sampling and rectangular lattice sampling.
Rectangular lattice sampling is simply Lcs using a sc lattice for the constraint. This sampling
method will generally serve as our baseline for comparison purposes. We perform random
sampling via random shuffle based on nominal point densities as estimated by Equations 4.21 and
4.22. Since our test source is GMAPD LIDAR, we are able to test generating LoDs through both the
base sampling and resampling approaches described in Section 4.5. We provide a comparison of

both approaches.
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Empirical Probability Densities of Inter-Point
Spacings Under Various Sampling Constraints
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Figure 4.5: Observed distribution of inter-point NN spacings for samples generated by various sampling
constraints.

4.7 Results and Discussion

We demonstrate our lattice-based sampling approaches using a GMAPD LIDAR point cloud data set
with a variety of flat surfaces, buildings, and vegetation. We chose to demonstrate our approach
with GMAPD LIDAR since it afforded the opportunity to compare both directly sampling and
down-selecting data, which is not possible with linear-mode L1DAR. This is because GMAPD data is
generated from raw measurements at several orders of magnitude more than linear-mode LIDAR.
However, GMAPD data is very noisy and must be processed to determine which returns originated
from actual surfaces in the scene. This process results in a large data reduction since the majority
of raw measurements are used only to support the filtering process and are not included as part of

the final product. However, our LoD generation approach is equally applicable to all point cloud
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Empirical Probability Densities of Planar Sampling
Densities Under Various Sampling Constraints
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Figure 4.6: Observed distribution of Voronoi cell point densities for samples generated by various sampling

constraints.

Figure 4.7: Examples of directly sampled (top) versus resampled from 30 pls/m? (bottom) point cloud LoDs.
(a) and (e) 1 pls/m?, (b) and (f) 2 pls/m?, (c) and (g) 4 pls/m?, (d) and (h) 8 pls/m?.
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Directly Sampled vs. Resampled Point Density
Distributions at Various Objective Detail Levels

Normalized Frequency
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Figure 4.8: LoD sample density distributions for GMAPD LIDAR point clouds directly sampled from raw
data versus LoDs generated from 30 pls/m? filtered data.

data sets, regardless of heritage.

The directly-sampled results were generated from an input raw data set consisting of
two overlapping swaths collected with an elliptical scanning system. The raw data contains
23836 717 direct ranging measurements within an approximately 22 500 m? area. The raw data
was filtered using coincidence processing with sample sites established by our proposed lattice
constraints as described in Section 4.5. The lattice constraints were set to target a base inter-sample
spacing of 35 cm. The cumulative distribution of inter-point spacings was computed according to
the approach outlined in Section 4.6. Figure 4.5 illustrates the observed probability densities of
inter-point spacings for the point cloud data set tested. The sc sampling constraint, shown in bold
black, serves as the baseline for comparison. As illustrated, inter-point spacing is best preserved

among the sampling lattices with the “spacing” constraint imposed. This constraint is represented
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in the figure by blue lines and legend subscript “i”. Observe that the central modes for each of sc,
FCC;, and BcCc; are aligned with each other at approximately 35 cm which was the inter-sample
spacing provided to our algorithm. Note, the secondary mode in the sc case as predicted from the
near-degenerate Delaunay triangulation condition imposed by the square lattice. The secondary
mode is predicted to appear at approximately 49.5 cm for perfect square lattices. Our observations
show that the secondary mode appears in this case with slightly shorter edge length closer to
47.5 cm.

Similarly, the cumulative distribution of point densities was computed according to the
approach outlined in Section 4.6. Figure 4.6 illustrates the observed probability densities of
sampling densities for the point cloud data set tested. Again, the sc sampling constraint, shown in
bold black, serves as the baseline for comparison. As illustrated, sampling density is best preserved
among the sampling lattices with the “density” constraint imposed. This constraint is represented
in the figure by orange lines and legend subscript “d”. Observe that the modes for each of the sc,
Fccg, and Bccy are aligned with each other at approximately 8 pls/m? which was the sampling
density provided to our algorithm.

Next, we compared predicted point cloud sizes with observed point cloud sizes for directly
sampled point clouds. Since our point clouds contain a mix of 2D and 3D scene content, we expect
the actual samples to generally fall between the predictions given by the 2D and 3D constraints.
The only case where this is not true is with the “spatial resolution” constraint where the 2D and 3D
predictions are identical and thus provide an overly restrictive prediction range. Note that actual
point counts may be slightly lower than predicted due in part to density contour mitigation as
described in Section 4.1.7. Table 4.3 summarizes the results of the experiment. As expected, under
all constraints except “spatial resolution” the actual number of points generated falls between the
2D and 3D predictions. Furthermore, sample size is generally best preserved when the “samples”
constraint is imposed. The only sample constraint that offers competitive sample size preservation
is Bccy. This is possibly due to the fact that its prediction range spans across zero.

We were unable to develop a method to directly measure the observed texture and spatial
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Table 4.3: Predicted vs. Actual Samples Relative to sc Lattice (A%)

Predicted

Lattice Constraint Points 2D 3D Actual
FCC Spacing 638973 +15.47 +41.42 +20.95
BCC Spacing 596 293 +6.07 +29.90 +12.87
BCC Density 562 802 — +18.92 +6.53
FCC Density 554 688 — +13.98 +4.99
BCC Texture Resolution 531 287 —5.72 +8.87 +0.56
SC 528312 — — —

FCC Samples 508776  —8.35 — —-3.70
BCC Samples 500915 —10.91 — —5.19
FCC Texture Resolution 480464 —13.40 -8.14 -9.06
FCC Spatial Resolution 427069 —23.02 —-23.02 —19.16
BCC Spatial Resolution 397805 —29.29 —29.29 —24.70

resolution of the point clouds under the various sampling strategies. However, in each of the
three previous experiments, the trends for the texture and spatial resolution constraints followed
the predictions established in Section 4.1 which leads us to believe that the performance in the

spectral domain also follows as predicted.

Table 4.4: Quality Metrics for Directly Sampled vs. Resampled Point Cloud Lops

LOD Method AnPs ANPD  Samples
(pls/m®)  (type) (m)  (pls/m’) (pt)

30 Direct 0.194 28.99 1753740

20 Direct 0.211 19.65 1232853

Resample  0.212 18.63 1116 874

8 Direct 0.380 7.92 520072

Resample  0.383 7.60 527355

4 Direct 0.538 3.98 259957

Resample  0.570 3.97 275974

2 Direct 0.745 2.00 123 488

Resample  0.772 1.94 136 745

1 Direct 1.075 1.00 56610

Resample  1.099 0.97 66273

Next, we tested our LoD generation approach and compared ANPs, ANPD, and sample sizes
to directly sampled point clouds. For this experiment, we performed all sampling using a Fcc

lattice and density-preserving scale factor. Figure 4.7 illustrates the resampled Lobs compared to
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their directly sampled counterparts. Figure 4.8 illustrates the distribution of observed densities
in the resulting point clouds. Table 4.4 summarizes the point cloud metrics computed for each
LoD. In general, ANPD and ANPs track very closely with the predicted values for the Fccy lattice
constraint. We see that, in general, resampled LoDs have slightly sparser ANPD and slightly coarser
ANPS than their directly sampled counterparts. We expect this result since samples are more
likely to be offset further from the lattice constraint sites for resampled data sets. One unexpected
result of the experiment was that sample sizes were generally larger for the resampled LoDs
versus the directly sampled LoDs. We expected the sample sizes to track more closely with each
other because the number of lattice constraint sites is identical between the directly sampled
and resampled LoDs. This result may be representative of an aliasing artifact or it may simply be
due to the fact that resampled points are not subjected to further filtering, unlike their directly
sampled counterparts as detailed in Section 4.5.

Next, to demonstrate algorithm run time scaling and application to various point cloud
source types, we ran our LOD generation approach against additional data sets of 20 pls/m? GMAPD
LIDAR and 24 pls/m? linear-mode LIDAR. The GMAPD LIDAR data set contains nearly 35 million
points over approximately 0.58 km?. It is a single tile from an aerial mapping survey collected
as part of the North-East Illinois (NEIL) pilot project provided by Harris Corporation [156]. The
GMAPD product is derived from double overlapping swaths of elliptically scanned raw data. The
linear-mode data set contains nearly 124 million points over approximately 2.32 km?. It is part of
an aerial mapping survey over Hillsborough County, rL collected for Southwest Florida Water
Management District. The linear product is derived from an aggregation of primarily single swath
coverage collected with a Riegl vQ-1560i ALs which collects two crossing scan lines simultaneously.
These data sets were selected to illustrate both processing time scaling with respect to input data
size as well as consistent performance in data reduction in resultant LoDs.

Figure 4.9 compares the results of down-sampling both data sets to the coarsest generated
LoD of 1pls/m? versus the respective native samplings. Both data sets are very dense at their

native sampling with sufficient obliquity to capture vertical structures like building sides, power
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(e) ()

Figure 4.9: GMAPD (top) and linear (bottom) LIDAR products showing original and preserved structures
at native sampling and resampled to 1 pls/m?. (a) and (b) Illustrate preservation of steep vertical features
like the church steeple, power lines and poles, and tree structures. (c) and (d) Illustrate preservation of fine
features like the playground, swing set, and faint power lines. (e)—(h) Illustrate similar preservation of
fine and vertical features in linear mode data where vertical sampling may be significantly coarser than

horizontal due to line of sight obliquity.

poles and lines, and fences. These examples show that our approach provides a natural sampling of
the scene in both horizontal and vertical, preserving structures in 3D even when down-sampling

very coarsely with respect to native product sampling.

(2

Table 4.5: Resampling Run Times by LoD

Source  ANPD Input LOD Run Time  Output
(type)  (pls/m’) (pt) (pls/m?) (s) (pt)
GMAPD 30 1691329 20 19.74 1116874
8 15.52 527355
4 10.99 275974
2 10.23 136 745
1 9.58 66 273
GMAPD 20 34985652 8 307.02 14116 733
4 238.85 7 683 286
2 209.05 3987454
1 189.63 1966 431
Linear 24 123990 155 8 1049.66 47028797
4 826.01 29004 193
2 695.52 16 625328
1 630.44 8970506
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Table 4.5 summarizes the run times required to generate each LoD in a single-threaded
process on a 3.1 GHz Red Hat® Enterprise Linux® (RHEL) system. The run times appear to at least
meet the predicted growth from Section 4.3. As expected, run times are largely dominated by the
time required to spatially index and iterate over the input point cloud. This leads to largely linear
growth in run time with respect to input point cloud size with run times slightly improving for
coarser LODS.

The timing results also inform the design of parallel processing approaches. While the
majority of our processing steps are trivially parallelizable, there are two aspects of our algorithm
that do not readily support parallelization. The first challenge to parallelizing our approach is
spatially indexing the input data. While possible, developing a parallel approach to building
the spatial index is non-trivial. However, the larger barrier to parallelizing our approach is in
Algorithm 4.5. The loop dependence on the candidate sample set in this algorithm would need to
be removed to make any parallelization viable. The most straight-forward approach to resolving
this issue is to parallelize via a simple divide and conquer approach. By performing an initial
spatial partitioning of the input data into equal areas, each area can be processed independently by
separate threads with a trivial merge to consolidate the individual result sets. The expected speed
gains from such an approach should scale approximately with the number of threads dedicated to

the parallel processing.

4.8 Summary

The sampling rates for LIDAR point clouds may be highly variable depending on the desired
application domain and support needed for down-stream analysis. To date, LIDAR specifications
and studies have focused on two primary metrics for quantifying point cloud sampling rates: NPs
and NPD. These metrics focus only on horizontal sampling rates and provide little guidance for
vertical sampling rates or optimizing point cloud sizes while maintaining the desired sampling

support.
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In this chapter, we presented several approaches for extending the inherently 2D concepts
of Nps and NPD to 3D sampling via Lcs. Furthermore, we demonstrated how the sampling lattices
may be scaled to preserve several desirable traits of a simple cubic lattice while potentially offering
greater sampling efficiency or robustness to voids. We presented two forms of Lcs that offer
subtle differences in the preservation of fine feature details in point clouds. We also addressed
the primary sampling artifact that manifests with Lcs and provided a mitigation strategy. Finally,
we demonstrated how Lcs may be employed to generate point cloud Lops with a specialized
approach given for single-photon and GMAPD LIDAR systems.

In conducting the analysis for this chapter, we identified an open research opportunity to
refine the measured performance of LIDAR systems with respect to the sampling rates observed
in their derivative products. Specifically, there is currently a lack of general consensus on the
definitions of NPs and NPD and the methods used to assess these metrics. This topic is developed
further in Chapter 5. Furthermore, while we were able to propose lattice constraints that would
preserve texture and spatial resolution with greater sampling efficiency than a simple cubic lattice,
we were unable to establish a methodology for validating the performance of these constraints.
Initial research direction for this topic is explored in Chapter 6.

Finally, we believe there are potential applications of the LoD approaches presented in this
chapter remaining to be explored. For example, given the incredible size of LIDAR data holdings,
especially for high-resolution data sets, there may be applications related to data streaming,
indexing, and hierarchical processing that are enabled by the LoD generation approaches we
present. This topic remains outside the scope of this dissertation and represents an open research

opportunity for future development.
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CHAPTER 5:
UNBIASED ASSESSMENT OF AIRBORNE LIDAR SPACING AND
DENSITY METRICS

Chapter 4 introduced an efficient approach for performing lattice-constrained stratified sampling
of point cloud data. While analyzing the performance of the feature preserving lattice scales,
an additional research opportunity was identified that directly contributes to the scope of this
dissertation. Recall from Section 2.3 and Section 2.7 that NPs and NPD measures are considered to
be key characteristics of LIDAR data sets. However, there is currently no consensus on the precise
definitions of NPs and NPD nor on the methods used to assess these bQms. Simple estimates may
be used to coarsely predict these measures. However, the resulting predictions are frequently
inaccurate. Furthermore, the lack of robust assessment methods results in the situation illustrated
in Figure 5.1 where collections planned to identical densities achieve vastly different sampling
uniformity that remains undetected by current assessment approaches.

This chapter addresses the previously identified gap in assessing these two core DQMs
through the following four contributions. (i) We develop a strategy for reducing the dimensionality
of 3D data sets for NPs and NPD assessment without prior knowledge of expected sampling rates.
(ii) We refine current NPs and NPD assessment techniques to avoid biasing measurements away
from known collection and product generation constraints. (iii) We formalize the definitions
of NPs and NPD measures and provide a method for establishing confidence intervals. (iv) We
demonstrate assessment of linear and GMAPD LIDAR and evaluate the benefits of our approach
versus current approaches.

The chapter is organized as follows. Section 5.1 describes coarse estimation approaches
and the NpPs and NPD assessment techniques proposed by usGs [53] and Naus [96]. Section 5.2

introduces our refinements. Section 5.3 presents the comparison of our approach versus Naus
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Figure 5.1: Comparison of point distributions with identical predicted ANPD under current assessment
methodologies. (a)-(b): point scanning LMAPD ALS data. (c)—(d): flash MAPD post-processed ALs data.

against LMAPD point scanning LIDAR data and presents the performance of our approach against

GMAPD LIDAR data with known sampling constraints. Section 5.4 offers our conclusions and a

discussion of potential future work.

5.1 Prior Work

At the most basic level, ANPD estimation is accomplished by simply assuming that points are
generated at a fixed rate over a collection area and that the resulting points are uniformly
distributed within this area. However the interrelationship of terrain effects, scanner steering,
and platform motion leads to significantly non-uniform point distributions. These effects can
be modeled in great detail, as discussed in Section 6.4, for the purposes of predicting sampling

coverage and uniformity or even supporting simulation of fully synthetic point cloud generation.
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While these models are helpful for illustrating the deviation of samples from the simplistic uniform
coverage model, they do not address the assessment of as-collected data.

There are currently two primary modes of performing NPD and NPs assessments. Grid-
based assessment, as proposed by UsGs [53], is by far the more widely adopted approach. However,
it also is demonstrably flawed [3]. Alternatively, triangulated irregular network (T1n) based
assessment, as proposed by Naus [96], addresses several of the flaws in grid-based assessment,
yet still suffers from flaws in establishing summary statistics. Both of the current approaches
also make assumptions about product attribution based on the legacy of linear-mode LIDAR data.
This is primarily due to the fact that single-photon sensitive LIDAR systems, like GMAPD LIDAR
and spL, and correlation-based point clouds, as derived by sFm, are relatively new point cloud
formation methods that do not create the same point attribution as multiple-return LMAPD point
scanning systems. Thus, they present new challenges to the data conditioning phase of both
current approaches.

With current approaches, density assessment is performed on a per-swath basis instead of
on aggregate final product. This is done to mitigate the effects of overlapping swaths artificially
inflating density assessments. However, multiple-channel systems, swath overlaps of greater than
50 %, and newer sensor modalities require that assessments be based on final aggregated product
data.

While point clouds capture fully 3D data, density assessment is primarily concerned
with assessing only the horizontal sampling fidelity of the product. As such, the first phase of
the assessment involves reducing the dimensionality of the data to 2D through conditioning
that attempts remove returns from overlapping surfaces. This is typically achieved by filtering
multiple return data to either first-and-only returns or last-and-only returns. This conditioning
approach assumes that the ALs system was both nadir-looking and capable of generating multiple
surface returns per pulse. To help enforce the former constraint under single-swath analysis, data
assessment is restricted to the central 90 % to 95 % of the collection swath to limit the influence of

increased view angle obliquity and of sharply increased sampling rates induced at scan-edges
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[53]. Obviously, for aggregate data, another approach will be required. The latter constraint is
enforced for linear-mode systems by requiring that systems be capable of producing up to five
discrete returns per pulse. However, such a requirement cannot be imposed on single-photon
sensitive systems or correlation-based approaches which again suggests the need to develop an
alternative conditioning strategy.

Depending on application and available attribution, point clouds may be further restricted
based on classification. This approach may be useful for removing points classified as vegetation, for
example. However, classification attribution requires additional post-processing to be performed

and thus cannot be relied upon as a data dimensionality reducing technique.

5.1.1 Grid-Based Assessment

The coarse grid assessment technique proceeds by first deriving an estimate of NPD. The UsGS
LBs recommends that the assessment leverage a 1km? or greater area of regard (AoR) that is,
“representative of the overall pulse density of the swath” [53, p. 5]. However, the specification
provides no guidance on how to determine areas that meet this criterion. Once an AoRr is identified,
NPD is simply computed as the raw count of conditioned points per unit area covered by the AoR.
Unfortunately, no effort is made to measure interpoint spacing. Instead, NPs is computed directly

from the NPD estimate by (5.1), which is simply (2.1) rearranged to solve for r.

r=— (5.1)

5.1.2 TIN/Voronoi-Based Assessment

Naus [96] recognized the potential for biases to be introduced through the technique described in
Section 5.1.1. He notes that bias sources include, but are not limited to: area of coverage and size
of the sample population, instrument characteristics and associated point distribution patterns,

position of the sample with respect to airborne instrument position (e.g., nadir and edge of swath),
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terrain variation (primarily percentage of area covered by water), ground cover variation and
multiple pulse returns, and theoretically derived values or values calculated using undocumented
methods. To counter these biases, Naus proposed using a TIN (specifically, Delaunay triangulations
[157]) for determining NPs, and its dual (Voronoi tessellations [158]-[161]) for determining NPD.

Since the two structures are dual to each other, there is no order dependence on the
assessment of Nps and NPD. To assess NPs, a Delaunay triangulation of the conditioned points is
formed. The average connected edge length is computed for each vertex in the graph. The NPps is
selected at the population 95 percentile (Pys) such that 95 % of the population of points have an
average connected edge length equal or less than the selected value.

Similarly, NPD is computed by forming a Voronoi tessellation of the points. Cells that
intersect with the convex hull are eliminated. Densities are computed as the inverse of the areas
of the cells since, by definition, exactly one point occupies each cell. The NPD is selected at Pys

such that 95 % of the cell population has a density equal or greater than the selected value.

5.2 Assessment Approach
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Figure 5.2: Comparison of quantitative density distribution assessment approaches
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The assessment approaches proposed by Naus offer several improvements over the coarse
grid assessment approach. However, they still suffer from the following limitations. First, the
dimensionality reduction approach proposed assumes the presence of return-number and number-
of-return attribution per pulse. This assumption is invalid for single-photon sensitive sensors, like
GMAPD LIDAR, and for correlation-based point clouds as derived by sFM. In these cases, every
point is an “only” return, so another dimensionality reduction technique must be used. Second,
measures of NPs are potentially biased by computing a summary statistic for each point. This is
especially true when sample layout closely approximates a square lattice. Rectangular lattices are
a degenerate case for Delaunay triangulations that result in the addition of hypotenuse edges,
significantly impacting the computed NPs. Third, by establishing the “nominal” thresholds for Nps
and NPD at Pys, the reported metrics are biased away from central tendencies and dominant modes
observed in the data as illustrated for densities in Figure 5.2. Fourth, Naus provides a detailed
treatment of observed variances, skewness, and kurtosis in the Nps and NPD metrics. However,
since the spacing and density probability distributions are often non-Gaussian, no method is
developed for providing a confidence in the final reported metrics. This section addresses each of

these limitations and presents proposed refinements to the TIN/Voronoi based assessment.

5.2.1 Data Conditioning

As in each of the current approaches, point cloud data may be optionally down-selected based
on classification when supporting attribution is available. However, since this information is not
always available, classification-based down-selection is unreliable for reducing the dimensionality
of data sets. Furthermore, since return labeling is only a valid down-selection technique for
linear-mode LIDAR data, an alternative down-selection approach that relies on neither return
labeling nor predicted sampling rates is proposed.

The first phase of the proposed dimensionality reduction involves establishing the expected

3D nearest-neighbor distance. To keep computational complexity reasonable, use an efficient
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Euclidean distance all nearest-neighbors search to establish the mean nearest-neighbor distance
for all points in the point cloud. The use of vp-trees is proposed since they support very efficient
spatial indexing and searches in any n-dimensional metric space [147]. The derived expected
closest inter-point distance is used to establish the sampling scale factor for down-selection.

Next, points are projected to the horizontal plane and assigned to cells in a regular
hexagonal raster with site centers separated by the expected closest inter-point distance. A regular
hexagonal raster is used because it provides the densest sphere packing in two-dimensional
space and has exactly one type of neighbor [110], thus potentially reducing measurement bias.
Dimensionality reduction is performed by selecting the point closest to each cell center as the
representative point for down-stream analysis. Notice that this dimensionality reduction approach
is distinct from the approach suggested by Duan et al. [76] since the conditioned points retain their
original locations instead of being relocated to raster sites. Furthermore, assessment is proposed
to proceed on the conditioned point cloud, not on a resampled rasterization of the data. The
proposed down-selection approach (i.e., selection of points closest to cell centers) leads to the
most uniform 2D inter-point spacings in the conditioned data and avoids introducing biases from
assuming that earliest and latest returns are strictly correlated with primary reflective surfaces
and ground surfaces, respectively.

Next, a Voronoi tessellation of the conditioned points is constructed. To keep computational
complexity reasonable, a sweepline algorithm, such as the one invented by Fortune [162], [163], is
used to create the tessellation. As suggested by Naus [96], cells that intersect the convex hull are
culled from the population to avoid skewing the resulting statistics. The remaining Voronoi cells

form the basis of the NPD assessment.

5.2.2 Density Assessment

Density assessment is proposed to be performed as follows. First, derive a density for each cell in

the culled Voronoi tessellation as the inverse of its area since, by definition, each cell contains
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exactly one point. Next, compute the primary mode of the population of point densities using
three separate methods for cross-validation. First, generate a histogram of density values. Set
the histogram bin width according to the Freedman-Diaconis rule [164], given by (5.2), to be
robust to outliers since the density distributions are expected to be non-Gaussian and potentially

multimodal.

1QR(x)

h=2
3n

(5.2)

The histogram-based primary mode is simply the bin containing the largest population of densities.
Next, perform a kernel density estimation (KDE) [165], [166] on the point density values. Evaluate
the xDE at the histogram bin centers for consistency. Similar to the histogram-based primary
mode, the kDE-based mode is the density associated with the strongest kernel response. Finally,
knowing that the distributions may be multimodal, fit a Gaussian mixture model (GMM) to the
point density values allowing for up to three components. Select the GMM-based primary mode to
be the mean of the component with the strongest peak, scaled for mixture percentage.

The number of modes in the density histogram, and thus the recommended number of
GMM components used to fit the data, appears to be correlated with the number of swath overlaps
in non-aggregate model data. The recommended data conditioning to filter overage and withheld
points is intended to mitigate this effect by ensuring approximately uniform product density
within the assessed data. However, these attributes are not always reliably populated. For the
common case of achieving complete sampling coverage with partial swath overlap, at least two
modes are expected due to the number of overlaps. In the case of aggregate or synthetic model data,
uniform sampling density is expected regardless of the raw swath data overlaps. An additional
mode may appear as a result of the dimension reduction approach. This mode appears when
down-selected points appear closer than the down-selection raster predicts. This phenomenon is
similar to the density artifact illustrated in Figure 4.4.

Disagreement in the assessed primary modes computed by each method suggests the need

for closer examination of the data set. Otherwise, consensus suggests that NpPD may be established
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by the MM estimate. Using the GMM estimate enables the use of the associated standard deviation

to establish a confidence for the NPD estimate, which is not possible with the other approaches.

5.2.3 Spacing Assessment

Unlike Naus [96], we do not use a true Delaunay triangulation to assess NPs, though in most
cases, the graph we use will be very similar to a Delaunay triangulation. We allow for one
constraint relaxation: specifically, we do not require the mesh used for evaluating NPs to be a
triangulated mesh. This relaxation allows us to avoid biases introduced by resolving degenerate
cases of Delaunay triangulation. That is, when rectangular cells are formed, we do not require
the insertion of a hypotenuse edge to resolve the degenerate state of the TIN. Essentially, this
relaxation equates to establishing edges between only edge-adjacent site centers in the Voronoi
tessellation. Corner-adjacent sites are ignored.

In addition, we recommend against computing a summary statistic for each point. This
allows the complete population of edges to be evaluated and will reveal modes in the distribution
that arise due to near-degenerate Delaunay triangulations or scan pattern irregularities. While
these subtle changes prevent some bias from being introduced to the spacing metric, we still
observe multiple modes in the spacing distribution for near-degenerate cases. This is especially ev-
ident when sampling approaches a rectangular lattice—a case common for commercially available
GMAPD LIDAR products as produced at this time.

Other than these modifications, we compute our population of spacings in the same
manner as Naus [96]. Once the spacing population is established, we assess NPs in a manner
similar to our NPD estimation by identifying the primary mode of the distribution using the
same three methods described in Section 5.2.2. One slight modification is that we allow up to six
components for the MM fit since the spacing distributions have a tendency to exhibit more modes
or less-Gaussian shaped distributions than density distributions. As discussed in Section 5.2.2, we

have found the need for additional components to be correlated with the number of overlapping
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Figure 5.3: Typical mode-fit results from our approach.

swaths in non-aggregate model products. Furthermore, additional components may be needed
due to the sampling irregularities introduced by the scanning system. While we have found that
allowing for up to six modes was sufficient in our empirical testing, we believe that maximum
number of modes may be best predicted by the dominant vertex degree in the assessment graph.

However, this conjecture was not proven as part of this dissertation.

5.3 Results and Discussion

In this section, we present two evaluations of our approach. First, we compare our assessment
techniques to those of Naus [96] against a linear-mode data set. Next, we evaluate our assessment
approach against GMAPD LIDAR data that was generated with known sampling constraints to

determine how reliably our method identifies the constraints used to generate the product.

5.3.1 Evaluation of Linear-Mode LIDAR Product

Our linear-mode LIDAR data assessment test used the same selection of tiles from the Red River
Basin Mapping Initiative 2008-2010 (RRBMI) project [167], [168] as Naus [96]. The data was

downloaded from The National Map [60], a service of the UsGs. The sample areas are illustrated
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in Figure 5.4. Table 5.1 summarizes the results of our NPD assessment versus the Pys TIN/Voronoi

technique.

Figure 5.4: Linear-mode sample areas from the RRBMI project.

Table 5.1: NPD of RRBMI tiles. Planned NPD: 0.55 pls/m? [168]

CDF Mo GMM-1

Tile  Py;  Histogram KDE u o %

678  0.364 0.392 0.392 0.397 0.031 313
679  0.373 0.412 0.412 0.408 0.033 31.7
680  0.377 0.402 0.402 0.408 0.029 333
727  0.345 0.374 0.380 0.381 0.028 53.0
728 0.345 0.377 0.377 0.375 0.023 39.8
729  0.339 0.373 0.373 0.379 0.030 52.2
776 0.353 0.380 0.380 0.384 0.024 484
777  0.348 0.375 0.375 0.380 0.025 485
778  0.347 0.370 0.375 0.382 0.027 545

The values we computed for Pys match very closely with those reported by Naus. Also, the
primary mode estimates consistently agree with each other. For this data set, the NPD estimated
by our technique is consistently greater than the NPD estimated by the TIN/Voronoi technique. As
illustrated in Figure 5.3a, the primary modes we detect are also the coarsest, which allows us to

report a 95 % confidence interval (c1) for NPD as 0.397(61) pls/m? for Tile 678, for example.
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Similarly, Table 5.2 summarizes the results of our NPs assessment versus the Pos

TIN/Voronoi technique. Again, the values we computed for Pys match very closely with those

Table 5.2: NPs of RRBMI tiles. Planned NPs: 1.35m [168]

CDF Mo GMM-1

Tile  Py;  Histogram KDE U o %

678  1.879 2.100 2.100 0.714 0.237 28.6
679  1.866 2.099 2.099 2.068 0.104 11.8
680  1.858 2.104 2.104 2.096 0.054 5.9
727  1.932 2.119 2.109 2.101 0.054 9.9
728  1.934 2.123 2.114 2.097 0.061 10.9
729  1.940 2.116 2.106 2.096 0.061 11.2
776 1.918 2.119 2.119 2116 0.046 9.9
777  1.925 2.116 2.116  2.112  0.047 9.9
778  1.929 2.122 2122 2.114 0.045 10.5

" Primary GmM mode disagrees with histogram and/or KDE estimates

reported by Naus. The primary mode estimates consistently agree with each other, with one
notable exception. For Tile 678, the MM resulted in two components with near-identical peak
frequency. The secondary mode appears at 2.098 m, which agrees well with the other estimated
primary modes. The typical NPs fit, as illustrated in Figure 5.3b, is also the coarsest, which allows
us to report a 95 % c1 for NPs as 2.068(204) m for Tile 679, for example.

Interestingly, the NPs estimates we compute for this data set are consistently coarser than
those estimated by the T1n/Voronoi technique despite the NpD being estimated consistently higher.
We found that this result was primarily due to the use of a per-point summary statistic by Naus,

which effectively hides the presence of a significant population of longer edges.

5.3.2 Evaluation of Geiger-Mode LIDAR Product

Next, we evaluated our assessment technique against GMAPD LIDAR data with known processing
constraints. For this test, we used data from the NEIL pilot project provided by Harris Corporation
[156]. Each tile covers more than 580 000 m? and was processed to a planned NPD of 20 pls/m? and

NPs of 0.22 m. We drew test data from three scene types including urban, suburban, and foliage
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to test the assessment approach. The selected test areas are illustrated in Figure 5.5.
Table 5.3 summarizes the results of the suburban tile NPD assessment and Table 5.4

summarizes the results of the urban tile NPD assessment. In these test areas, the primary mode

Table 5.3: NPD of selected suburban NEIL tiles. Planned NPD: 20 pls/m?

CDF Mo GMM-1

Tile Py;  Histogram KDE u o %

16257625 18.52 20.44 20.44 20.74 1.707 579
16257650  19.00 20.39 20.74 20.77 1.609 36.5
16257675 19.13 20.53 20.53 20.78 1.538 343
16507625 18.24 20.47 20.54 20.74 1.838 783
16507650  18.83 20.42 20.42 20.76 1.582 47.3
16507675 18.97 20.43 20.78 20.78 1.584 39.2
16757625 18.72 20.46 20.46  20.79 1.655 50.6
16757650 18.64 20.46 20.46 20.74 1.589 62.6
16757675 18.67 20.48 20.48 20.72 1.525 63.4

Table 5.4: NPD of selected urban NEIL tiles. Planned NpD: 20 pls/m?

CDF Mo GMM-1

Tile Pys  Histogram KDE u o %

17258975 18.91 20.46 20.64 20.77 1336 62.3
17259000 18.86 20.46 20.71 20.81 1.411 5438
17259025 19.10 20.54 20.54 20.79 1.282 579
17508975 18.91 20.56 20.56 20.78 1.358 60.1
17509000 19.47 20.61 20.61 20.79 1.398 559
17509025 19.05 20.73 20.47 20.81 1333 56.7
17758975 18.98 20.59 20.59 20.71 1.093 463
17759000 19.19 20.46 20.46 20.82 1.293 494
17759025  19.07 20.51 20.51 20.81 1.351 514

estimates for our technique agree with each other and consistently estimate a NPD greater than
the Pys TIN/Voronoi technique. Furthermore, the measured NpD matches the known processing
constraint very closely. However, we were initially surprised to see that this evaluation trend did
not continue when examining the results of the foliated scene assessment. Table 5.5 summarizes

the results of the foliated scene NPD assessment.
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(c) Foliage

Figure 5.5: GMAPD sample areas from the NEIL project.
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Table 5.5: NPD of selected vegetated NEIL tiles. Planned NPD: 20 pls/m?

CDF Mo GMM-1

Tile Pys  Histogram KDE u o %

07009525  19.23 20.63 20.63 20.83 1772 224
07009550  19.58 40307 40307 4145 9365 83.9
07009575  19.05 20.78 20.78 20.82 1.546 35.1
07259525 18.63 20.82 3789 42.63T 7.278 534
07259550  20.72 3831 39.41° 42.85 7.868 70.7
07259575  20.81 39.41° 39417 42.74° 7.899 729
07509525  20.11 37.68 37.90° 4197 6.954 62.4
07509550  23.50 40.16" 40.36" 3855 7.574 80.2
07509575  19.54 20.46 20.76 20.80 1.647 20.2

07009550 13.43 20.53 20.85 2146 3.719 759

" Primary mode evaluated to significantly denser than processing constraint
' Primary Gmm mode disagrees with histogram and/or KDE estimates
* Data conditioned to remove isotropic clutter

As illustrated in the results, the majority of the tiles in this experiment assessed to a
significantly denser sampling than the horizontal constraint used to produce the data. While this
result may seem acceptable and perhaps more desirable than assessing to a significantly coarser
sampling, disagreement with the known processing constraint was a surprising result. Upon
further inspection, we discovered that the vertical sampling interval was set to 0.10 m for the
NEIL project instead of 0.22 m, which would have established a uniform sampling lattice. Recall
from Section 4.1.2 that setting the vertical sampling interval smaller than (4.10) may result in an
effective horizontal sampling that is finer than the horizontal sampling constraint for any non-
horizontal surface with slope greater than :—}Vl We initially attributed the observed disagreement
to this effect. However, resampling the point cloud to 0.20 m and 0.4 m vertical separation did not
cause the assessment to align more consistently with the known processing constraint. Instead,
we ultimately realized that the assessment was influenced by a combination of the significant
vertical structure in the scene and the increased jitter within down-selection cells for samples
below canopy.

For the foliated scene, the average 3D nearest-neighbor separations are in the range of

0.160 m to 0.167 m. This range is consistent with the average 3D nearest-neighbor separations in
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the suburban and urban scenes: 0.163 m to 0.171 m and 0.160 m to 0.170 m, respectively. However,
due to the significant vertical structure in the foliated scene, a significant population of densely
packed cells is observed in the assessment Voronoi diagram that ultimately dominates the expected
population. Figure 5.6 illustrates this effect for one of the tiles in the test set. Figure 5.6a illustrates
the increased density observed over foliage as compared to open ground. Figure 5.6b illustrates
the resulting impact on the density population. Notice that the expected mode appears just above
20 pls/m?. However, the dominant mode appears at the density predicted for a hexagonal raster

with inter-point spacing of approximately 0.165 m (i.e., approximately 41.5 pls/m?).
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Figure 5.6: Influence of vertical structure and sample jitter on horizontal sampling assessment of foliated
scene. (a) Foliage sampling density versus open terrain. (b) Density population distribution for foliated
scene.

The result of the foliated scene experiment points to the need to further improve the
down-selection approach for foliated scenes. Consider that NPD (and NPs) are assessments of
sampling of planar surfaces. By leveraging the local features developed in Chapter 3, we can
identify and reject isotropic clutter from the NPD and NPs assessment and restrict the assessment
to only planar surfaces in the scene. We performed this modification to the data conditioning by

estimating dimension label according to (3.5) for neighborhoods sized to 2v/2x nearest-neighbor
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separation. Figure 5.7 illustrates the improvement realized by this conditioning. Notice that the
former dominant mode has been nearly completely eliminated by this conditioning step without
affecting the expected mode at the processing constraint. The last row in Table 5.5 shows the
improvement in the quantitative assessment. After conditioning, all three modes agree and closely

approximate the known processing constraint.
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Figure 5.7: Conditioned foliage and resulting horizontal sampling assessment. (a) Conditioned foliage
sampling density versus open terrain. (b) Density population distribution for conditioned foliated scene.

Next, we performed Nps assessment for each of the test scenes. Table 5.6 summarizes the
results of the suburban tile NPs assessment, Table 5.7 summarizes the results of the urban tile
NPs assessment, and Table 5.8 summarizes the results of the foliated tile NPs assessment. Again,
our primary mode estimates agree well with each other for both the urban and suburban scenes
while there is anomalous behavior in the foliated scene resulting from the overly dense vertical
sampling interval. In all cases, the NPs estimates are consistently finer than the Py5 TIN/Voronoi
technique. Furthermore, the measured Nps of the urban and suburban scenes matches the known

processing constraint very closely.
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Table 5.6: NPs of selected suburban NEIL tiles. Planned NpPs: 0.22m

CDF Mo GMM-1

Tile Pys  Histogram KDE u o %

16257625 0.314 0.217 0.218 0.220 0.026 58.0
16257650  0.308 0.217 0.212 0.216 0.029 574
16257675  0.307 0.213 0.213 0.191 0.030 39.3
16507625 0.318 0.220 0.220 0.225 0.024 36.7
16507650 0.311 0.217 0.217 0.218 0.027 59.2
16507675  0.309 0.214 0.215 0.215 0.030 62.8
16757625 0.313 0.219 0.217 0.219 0.027 59.9
16757650  0.315 0.221 0.218 0.222 0.023 56.4
16757675 0.315 0.221 0.219 0.225 0.021 50.1

Table 5.7: NPs of selected urban NEIL tiles. Planned NPs: 0.22 m

CDF Mo GMM-1

Tile Py;  Histogram KDE u o %

17258975 0.314 0.218 0.220 0.223 0.020 58.2
17259000 0.314 0.222 0.219 0.225 0.021 524
17259025 0.313 0.218 0.219 0.224 0.021 38.1
17508975 0.314 0.217 0.220 0.224 0.021 553
17509000 0.314 0.217 0.219 0.225 0.023 48.9
17509025 0.313 0.223 0.219 0.223 0.020 48.8
17758975 0.313 0.218 0.219 0.222 0.020 54.2
17759000 0.311 0.216 0.219 0.221 0.022 60.6
17759025 0.312 0.220 0.219 0.223 0.022 585

5.4 Summary

In this chapter, we present refinements to current Nps and NPD assessment techniques to address
unmitigated sources of bias and to enable evaluation of non-linear-mode LIDAR products. While
this work hopefully leads to improved standardization of the assessment of these key LIDAR
quality metrics, we believe there is still work remaining to introduce other metrics to better
convey product information content versus simple sampling rates for quality measures. At the
very least, we believe that there is potential value in establishing an evaluation approach for
assessing resolvable features within point cloud products and use-case applicability. This type
of assessment will become more important as data providers push the ability to collect with

ever-greater sampling density.
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Table 5.8: NPs of selected vegetated NEIL tiles. Planned NPs: 0.22m

CDF Mo GMM-1

Tile Py;  Histogram KDE u o %

07009525  0.300 0.183 0.186 0.179 0.038 45.4
07009550  0.297 0.183 0.185 0.219 0.045 424
07009575  0.309 0.213 0.215 0.218 0.028 55.6
07259525 0.305 0.185 0.185 0.197 0.042 423
07259550  0.287 0.184 0.184 0.192 0.039 445
07259575  0.287 0.184 0.184 0.188 0.041 423
07509525  0.292 0.184 0.185 0.224 0.040 44.1
07509550  0.276 0.182 0.183 0.176  0.037 46.9
07509575  0.299 0.184 0.185 0.224 0.043 453
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CHAPTER 6:
DISCUSSION ON ADDITIONAL MODELS AND METRICS

Chapters 3-5 covered development of ALs LIDAR point cloud sampling strategies and assessment
methods. However, recall from Chapter 2 that sampling considerations represented just one of
the perceived gaps identified for evaluating point cloud usability within a comprehensive LIDAR
DQAF. Eliminating items from the list of proposed usability DQMms, established in Section 2.7, that
already have accepted assessment methods or that are addressed earlier in this dissertation results

in the following list of remaining perceived gaps:

surface representation

— surface resolution

texture representation

— intensity resolution

- intensity dynamic range

— intensity SNR
« data completeness

- sampling coverage (void/occlusion analysis)

« data consistency
- internal consistency (intraswath smooth surface precision)

— external consistency (interswath surface repeatability)

This chapter presents materials developed through the course of the dissertation research
that support next steps in the research direction to address these remaining factors. While full
treatment of these factors requires additional development beyond the scope of this dissertation,
these preliminary treatments are provided to facilitate subsequent discussion and research to
ultimately produce a comprehensive LIDAR point cloud DQAF that considers all of the identified

usability factors. Finally, we discuss leveraging the refined understanding of usability factors in the
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context of the DQAF, and their respective impacts and assessments, to inform the development of
predictive models to support collection planning designed to efficiently meet usability objectives.

The remainder of this chapter is organized as follows. First, we present assessments that
directly follow from the methods developed in this dissertation. Section 6.1 presents the devel-
opment of qualitative masks derived from areal analysis of point cloud products. Section 6.2
presents an extension of the previously developed density and spacing assessment methods to
localized void and occlusion assessment. Section 6.3 presents an extension of the previously de-
veloped density and spacing assessment methods to internal and external consistency assessment,
specifically considering greater than pair-wise swath overlaps. Next, we provide initial direction
for addressing the remaining identified usability factors. Section 6.4 provides an overview of
ALS system modeling and simulation, discusses implications for predicting and assessing the
photo-interpretable pQ factors, and suggests development of a moderate resolution model to
support usability-focused collection planning. Section 6.6 addresses the basic modeling of system
optics, constraints established by product specifications, and evaluation of surface and intensity
resolution in final products. Finally, Section 6.5 addresses link analysis according to the LIDAR
fundamental equation and prediction and evaluation of intensity dynamic range and SNR, with

specific considerations for single-photon sensitive systems like GMAPD LIDAR.

6.1 Qualitative Assessment Masks

The majority of this dissertation has approached pg assessments from the perspective of generating
DQMs for the purposes of supporting product acceptance criteria and determining product fitness
for purpose. While such measures are useful for supporting pass/fail criteria, they may not fully
capture and relate localized DQ concerns. This may be especially true for geospatial products with
large area coverage and localized, but acceptable, DQ issues. Similarly, simply leveraging pQMs
to alert the presence of apparent DQ issues fails to guide any subsequent inspection attempting

to locate the sources of the issues. To address these factors, qualitative masks derived from the

95



quantitative DQ assessment may be beneficial.

Generation of quality masks can often be performed simultaneously with quantitative
assessment since both require full inspection of the product. As an example, this dissertation
focuses on assessment of product sampling. While the NPs and NPD DQMs effectively summarize
the “nominal” sampling coverage, a qualitative mask more effectively illustrates and locates
potential sampling uniformity issues within products. To be effective, the resulting mask must
intuitively highlight both areas of over-sampling and under-sampling. This requirement implies
the application of either a diverging color map or a gradient color map. A proposed mask is
presented in Figure 6.1 for two products over the same Aor. The proposed mask uses a heat
map mnemonic that clearly highlights areas of over-collection and under-collection in the first
product when compared to the second. The darker areas in both products correlate with sparse
collections at ground due to canopy obscuration, an effect explored further in Section 6.2. Notice
that while a heat map is used to illustrate the proposed map, a blue-gray-red diverging color map
may be similarly effective for highlighting extrema with a more neutral treatment of objective

performance.

(a) (b)

Figure 6.1: Example of proposed density assessment quality mask
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The mask presented in Figure 6.1 is created from the 2D projected assessment cloud used
to derive the NPs and NPD DQMs developed in Chapter 5. In this specific case, the point cloud data
was filtered to points classified as ground to assess sampling uniformity for terrain recovery. The
mask raster is sized such that raster cells have side length of 2¢/2x aANPs. This means that each
raster cell is expected to contain 8 samples. Observed density versus expected density is computed
for each cell as (ATnNPD)' The color map applied to the mask is scaled so that the minimum maps
to threshold performance at 0.25x target NPD, center maps to objective performance at 1.0x target

NPD, and maximum maps to extremely oversampled performance at 2.0x target NPD. Cells that

fall below threshold performance are considered void and marked transparent.

6.2 Void Assessment

Void assessment is an obvious extension of the Voronoi tessellation based sampling uniformity
assessment methods developed in this dissertation. Determination of voids logically follows from
density analysis since voids are specified by areas that fail to meet a minimum sampling density
threshold. Either the assessed NPD with a suitable scale factor (typically !/16) or a user-provided
threshold can be used to identify cells that fail to meet a specified acceptable threshold. Portions
of candidate cells that intersect known water bodies, such as those identified by auxiliary vector
models (e.g., as provided by the NHD [169]) are excluded from the assessment since they represent
expected and acceptable voids. Remaining candidate areas are unioned together into complex
polygons that are assessed for both count and area impacted. A worst case void assessment is
obtained by cataloging all voids regardless of water body data. This assessment may be further
extended to separately evaluate primary reflective surfaces and ground surfaces recovery. Such an
assessment would present collection voids versus terrain voids. The former would be meaningful
for all pQ assessments, while the latter would be meaningful for consumers requiring terrain
models (e.g., to assess hydrography or trafficability).

Similar to the quality mask proposed for coverage uniformity in Section 6.1, a quality
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mask for void assessment intuitively highlights unacceptable void areas. This requirement implies
the application of either a categorical color map or a gradient color map. A proposed mask is
presented in Figure 6.2 for two products over the same AoR. The mask uses a stoplight map
mnemonic that clearly highlights void areas. Unlike the density mask presented in Section 6.1, this
mask enables users to assess when sampling falls below an acceptable threshold. Thus, the dark
areas that were present in both images of Figure 6.1 are differentiated in Figure 6.2 to show less
acceptable coverage in the first product versus the second. One area where the presented masks
are lacking is in the exclusion of known water bodies. These still appear as red in the proposed
figure and are indistinguishable from unacceptable voids. Cross-referencing with existing water
body vector data as previously suggested for the quantitative assessment would provide a means

for trivially excluding these areas.

(a) (b)

Figure 6.2: Example of proposed void assessment quality mask

The mask presented in Figure 6.2 is created in a very similar manner to the sampling
uniformity mask. The primary difference is in the color map applied to the mask. In this case, The
color map is scaled so that the lower extreme maps to threshold performance at 0.250x target

NPD, center maps to median performance at 0.625x target NPD, and maximum maps to objective
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performance at 1.0x target NPD. Cells that are omitted from evaluation are considered void and

marked transparent.

6.3 Consistency Assessment

Finally, to assess product consistency, we propose a radially-based surface spread assessment.
Current approaches assess only in the vertical direction [57], [130] and the resulting assessment
is similar to the vertical standard deviation suggested by Duan et al. [76] for establishing depth
image resolution. However, slope correction at a local scale would allow for an estimate of ssr
with respect to a localized planar surface. To perform this assessment, we propose computing
the planar fit for localized slope correction via random sample consensus. The approach can
theoretically be used to assess both internal and external consistency. For the internal assessment,
measure the surface deviation of points associated only with a single temporally-consistent swath.
One known concern is that discovery of this association may be problematic with the current
point attribution models and will require additional investigation [44].

Assuming that the internal assessment can be successfully established, evaluation of the
external assessment naturally follows and resembles the existing sop assessment [57]. Compu-
tation of the population variance for the internal assessment necessarily involves computing
population means, essentially resulting in a low-pass filtered surface for each component swath.
Thus the external measure can be computed as the deviation of the mean surfaces.

If internal assessment can not be computed because the swath association is not discover-
able, an estimate of the external assessment can still be performed. In this case, simply measure
the surface deviation of all points in the final product as previously proposed for the internal
assessment, but without regard to swath association.

In both cases, the radial basis for the spread assessment will need to be established such
that a sufficiently large population of points is observed in the neighborhood of each assessed

point. A potentially noteworthy aside that may impact computational complexity is that while
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the deviation measurement can be computed at each point, the final assessed data will appear to
have undergone a convolution operation if assessed at the full product fidelity. Specifically, ssr

attribution and sop attribution are both expected to resemble an edge-filtered response surface.

6.4 Modeling and Simulation of LIDAR Scanning Systems

Through the remainder of this chapter, we address the pQ factors that are not directly supported
by the prior developments of this dissertation. Since each of the remaining factors are supported
by aspects of the ALs system not previously discussed, we begin by presenting an overview of
general LIDAR system modeling and simulation.

End-to-end modeling and simulation of LIDAR systems typically begins with the funda-
mental LIDAR equation, which describes the number of photoelectrons detected at range by a
LIDAR system [170]. A basic form of the fundamental LIDAR equation is given by (6.1). Individual

terms are defined in Table 6.1.

signal noise

e 1 a ~
N(A» R) = [Eh_c] [TxmitTreceﬂ] [ ﬁ ] [Taztmplas + [Bsun] (6-1)

+ Bdet

The variables in this form of the LIDAR equation are intentionally arranged to group terms by
specific contributions to the total received photons as follows: (a) the total photon budget emitted
by the LASER, (b) sensor instrumentation loss effects including optical and detector efficiencies,
(c) receive telescope photon gathering (i.e., the solid angle subtended by the receiver aperture at
range), (d) environmental loss effects including atmospheric and target absorption and scattering,
(e) detector background including thermal and line noise, and (f) environmental background
(assumed to be primarily solar). As illustrated, the first four terms represent the desired signal
while the latter two terms represent the primary contributions to system noise.

Separating the fundamental LIDAR equation into signal and noise components allows

for independent modeling of each to facilitate estimating system performance metrics like SNR
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Table 6.1: LIDAR Equation Nomenclature

Variable Definition Base Units Typical Units
N(A,R)  mean photoelectrons from laser-illuminated target — —
E transmitted laser pulse energy J W
A laser wavelength m nm
h Planck’s constant, quantum of electromagnetic action Js Js
c speed of light m/s m/s
Temit transmit optics spectral efficiency — —
Trec receive optics spectral efficiency — —
€ fractional energy in detector instantaneous field of view - -
n detector quantum efficiency — —
A receiving telescope aperture area m? cm?
R range to target m km
Totm atmospheric spectral efficiency along line of sight — —
Plas target back-reflection coefficient — —
Biet detector background — —
By solar background — -
S mean photoelectrons from laser-illumination only (signal) — —
Lun solar spectral irradiance at top of atmosphere W /m? pWm™2nm™!
Tlm atmospheric spectral efficiency along solar path — —
14 solar incidence (cosine) loss — —
Psun solar reflectivity coefficient along line of sight — —
Orov detector instantaneous angular field of view rad prad
ty range gate duration S us
B spectral filter bandpass m nm

and determine the conditions under which a designed LIDAR system will be capable of making
detections. The signal component can be directly extracted from (6.1) as (6.2).

A A
S = E—TimitTatmPlas Tatm 2 Tiecen
hC R ( 6. 2)

Ao, A
=E h_chmitTatmplas ﬁ Trec€ n

In this arrangement, photoelectron contributors are traced through the generative path. First, the
LASER emits a finite quantity of photons (Ehic)' Some of these photons are lost due to absorption
and scattering through the transmit optics (Ty ). After leaving the transmit optics, the laser pulse
travels through the atmosphere to the target. As the pulse propagates through the atmosphere,
photons are lost due to absorption and scattering interactions with atmospheric molecules (Ty,).
Once the LASER pulse reaches the target, a fraction of the photons are reflected back toward the

detector according to a bidirectional reflectance distribution function (BRDF) (py,s). The reflected
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photons travel back through the atmosphere, experiencing essentially the same losses as on
transmission (T, ). A fraction of the reflected photons are gathered by the receiver telescope
(%). The gathered photons are directed to the detector elements, experiencing absorption and
scattering losses along the receive optics path (Te.). A fraction of received photons are distributed
to individual detector elements depending on FPa size and optical alignment of transmission and
receive paths (¢). Finally, the received photons are converted to photoelectrons according to the
quantum efficiency of the detector (7).

Background due to solar illumination can be modeled in a similar manner. Fouche provides
a model of the background noise as (6.3) [171]. This arrangement traces solar noise along its
generative path. Photons near the spectral sensitivity of the LIDAR system arrive at the top of the
atmosphere at a near-constant rate (Isunhic). These photons travel through the atmosphere toward
the target experiencing losses due to absorption and scattering interactions with atmospheric
molecules (T/;,,,). At the target, a fraction of the photons are reflected toward the detector according
to a BRDF (Y psun)- The reflected photons travel through the atmosphere toward the receiver
experiencing additional atmospheric losses (T,;,)- A fraction of the reflected photons are gathered
by the receiver telescope and made visible to individual detector elements (A6?). The gathered
photons are directed to the detector elements, experiencing absorption and scattering losses along
the receive optics path (T;e.). Prior to arriving at the detector elements, the photons pass through
a spectral bandpass filter (f). The detector elements are exposed for the duration of one range gate
(ty) during which, photons are converted to photoelectrons according to the detector quantum

efficiency (n).

A
Bsun = Isun E_Tz;tmlﬁpsunTatheleovTrecﬁth (6.3)

In the early 2000s, Fouche illustrated how to relate the LIDAR equation to Poisson statistics
to establish detection and false alarm probabilities for LIDAR systems employing GMAPD detectors
[171]. His article establishes the critical relationships for single-pulse probabilities of detection

and false alarm as well as illustrating the form for multiple-pulse probabilities of detection and
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false alarm. He derives probabilities for up to five pulses to illustrate the detection certainty gains
realized by achieving coincident detections over a low number of interrogations. However, he
notes that computing probabilities for larger numbers of interrogations becomes increasingly
tedious due to the multinomial nature of the terms. As such, simulation of designed GMAPD
systems frequently relies on Monte Carlo approaches [172].

As a brief aside, the previously described GMAPD detection models assume synchronous
reset of the FPA. This behavior results in each LIDAR pulse being associated with a maximum of one
return per detector element. Recent advancements in GMAPD detectors allows for asynchronous
reset of independent detector elements resulting in potentially multiple returns per detector per
pulse and greater robustness to background blocking losses. However, these newer detectors are
not yet widely available and their impact on system designs is just beginning to be understood
[173], [174]. As such, investigating DQ impacts of these detectors remains beyond the scope of this
discussion.

While several terms in the fundamental LIDAR equation are dependent on system design,
there are several terms that are best estimated using established models. Atmospheric modeling is
typically handled by an established radiative transfer model like moderate resolution atmospheric
transmission (MODTRAN®) [175]. Detector quantum efficiency and dark current noise is typically
provided by manufacturers. However, Izler et al. provide a key refinement on modeling dark
count behavior in GMAPD detectors that may be useful for establishing dark current noise in
simulated systems [176], [177]. Similarly, modeling and simulation of system optics is best handled
by an optics design software suite and is considered to be outside the scope of this discussion.
Precise simulation of system MTF will allow for the best prediction of system limited resolving
power. In the absence of such a model, though, reasonable assumptions can be made from thin
lens approximations.

By the mid 2000s, O’Brien and Fouche published their approach for aggregating the
previously discussed components into a cohesive model of a complete GMAPD LIDAR sensor

system and demonstrated generation of synthetic imagery compared to field data [178]. Their
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general approach has been extended to generate synthetic imagery for several ALs systems and
validated for each [179]-[181]. Furthermore, their approach has been adopted for photon mapping
generation of synthetic point clouds in the Digital Imaging and Remote Sensing Image Generation
(p1rRs1G™) model [182], [183], which is widely used for synthetic generation of point cloud data
for designed systems.

Fine-grained models, like the DIRS1G™ model described above, are useful for predicting the
performance of LIDAR system designs prior to build and deployment. However, they are infeasible
for use as collection planning systems. Coarse-grained rate-based approximations, as described in
Section 5.1, are similarly infeasible since they are extremely inaccurate and overly optimistic in
their estimates of sampling density. Thus, planning systems that are designed to ensure products
meet usability criteria must strike a balance between these two extremes. This balance can be
achieved by first recognizing that development of the ranging transform sensor model is necessary
for the ultimate generation of 3D world coordinate data from any LIDAR system. Once developed,
this model can be leveraged to bound expected sampling performance of ALs systems at terrain
elevation extrema. For single-photon sensitive detectors, like GMAPD systems, sufficient sampling
to support cloud formation can be established by making simplified material assumptions. For
example, by considering minimum, maximum and expected scene reflectivities, as described in

Section 6.5.

6.5 LIDAR Link Analysis and Predicted Intensity Dynamic Range

Dynamic range and sNR prediction for linear-mode systems are both sufficiently addressed by
the fundamental LIDAR equation as presented in (6.1). Recall that this equation can be separated
into the signal and primary noise components according to (6.2) and (6.3). This separation alone
allows for a straight-forward estimation of SNR for most ALS systems once the required system
and environmental parameters are determined [171]. However, it is worth noting that this estimate

assumes integration of both signal and noise through the entire range gate of the LIDAR interro-
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gation. For single-photon sensitive systems, integrating noise returns through the entire range
gate means that the prediction of sNR will be pessimistic compared to actual results since noise
returns will be uniformly spread through the range gate while surface returns will be coincident
across small sections of the gate. It is this very phenomenon that enables coincidence processing
of GMAPD returns to eliminate background. It also means that single-photon systems have unique

considerations for the dynamic range and sNR prediction models.

6.5.1 GMAPD Prediction Model

O’Brien and Fouche [178] demonstrated the modeling of GMAPD LIDAR systems and the use of
Monte Carlo simulation to establish the probabilities of detection and false alarm. Fouche [171]
also presents how optical filters can be used to tune GMAPD systems for efficient surface detection.
However, operation in high noise scenarios, such as under daylight conditions, may result in
extremely compressed intensity dynamic range if only surface detection efficiency is considered.
Thus, a constrained model must be developed that considers both detection efficiency and relative
intensity response. An initial Monte Carlo model has been developed that evaluates the GmAPD
LIDAR optical link according to the model proposed by Fouche [171], but that optimizes filter
placement to maintain relative intensity within a determined threshold. Figure 6.3 presents a
detection probability plot from the proposed link model. Notice that filters could continue to be
added to align the response curves of both the brightest and darkest reflective surfaces. However,
this is the scenario that leads to flattened intensity dynamic range, or worse, inverted intensity
response.

Optimization of the presented model proceeds by increasing photon attenuation through
modification of either sensor quantum efficiency or placement of np filters to reduce overall
interrogations needed to achieve optical link at 95 % confidence such that materials with expected
Lambertian albedo at the LASER wavelength maintain relative signal intensity in final products.

Figure 6.3 illustrates the probability of detection and false alarm curves for an optimized scenario.
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Figure 6.3: Example of GMAPD LIDAR link model with dynamic range constraint.

Notice that the set of curves at the beginning and middle of the range gate appear in order from
left to right for decreasing reflectivity. By the end of the range gate, the brightest accommodated
reflectivity material is no longer relatively ordered with respect to the expected mean scene
reflectivity. This implies that we are unable to use the entire range gate, but that our expected
terrain variation fits within the remainder of the available gate where intensity relativity is
maintained.

By examining the integration curves for signal intensity throughout the range gate, was
can determine the longest dwell available at this optimization point that maintains the desired
intensity relativity. Figure 6.4 presents the associated sNR plot that predicts this longest available

dwell.
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Figure 6.4: Example of GMAPD LIDAR SNR model with dynamic range constraint.

6.5.2 Proposed Assessment Approach

Development of product dynamic range and SNR assessment approaches remains an open research
area. Miles et al. [126] and Duan et al. [76] present preliminary approaches that offer some initial
direction. The primary detriment of the approaches suggested by Miles et al. [126] is that they
require the deployment of specially constructed calibration targets that would need to be observed
for every collection. The primary detriment of the approaches suggested by Duan et al. [76] is that
the LIDAR point clouds must first be converted to 2D imagery, potentially biasing the assessment.
An ideal assessment approach would establish a compromise between these two methods where
the factors considered by Miles et al. [126] and Duan et al. [76] are assessed by evaluating the
point clouds directly as in [126] and using serendipitous targets as in [76]. Since the intensity

attribution is photo-interpretable, it would be especially beneficial to mimic the approach of [76]
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by seeking to establish analogs to the RER and sNR assessments from GIQE-5 [120] in the context

of LIDAR point cloud intensity.

6.6 LIDAR Transceiver Optics Analysis and Predicted Resolution

When designing ALs systems, the performance of the final optical design will generally fall into
one of three distinct domains depending on the limiting component of the system as illustrated in
Figure 6.5. Systems that sparsely sample at ground, like the early LASER altimeters, will generally
have product resolutions limited by sampling effects as discussed in Section 2.4. In this domain, GsD
dominates both detector instantaneous field of view (1Fov) and LASER beam spread as illustrated
in Figure 6.5a. Here, improvements in resolution can be realized by simply increasing sampling
density. However, resolution cannot be infinitely improved through sampling. As Gsp decreases
with increased sampling density, other system elements begin to limit achievable resolution.

Figure 6.5a also depicts a system where detector IFOv dominates LASER beam spread. While
this is not a necessary trait of a sample-limited system, it is a design that facilitates transmit and
receive alignment. However, an unnecessarily large 1rov will also lead to significantly increased
background as predicted by (6.3). Thus, many modern ALs systems more closely approximate the
system illustrated in Figure 6.5b where 1rov is reduced such that the LASER spot fills a significant
portion of the detector iFov. Most ALs systems make no attempt to shape the transmit beam to
flood-fill the detector 1FovV, so the laser spot profile is often Gaussian with a noticeable roll-off as
the beam the spreads. In this domain, as sampling density increases and Gsp approaches or falls
below the detector 1Fov, product resolution becomes limited by the LASER beam spread due to
the convolution of the transmitted beam with reflective surfaces.

If the transmit beam is shaped and scaled to flood-fill or over-fill the detector 1Fov, the ALs
system begins to approximate the system depicted in Figure 6.5c. Such beam shaping is typically
not employed for traditional ALs systems with a single detector element since both shaping and

over-filling result in potentially significant loss of signal. However, this strategy may be used
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Figure 6.5: Simplified comparison of system limiting effects on product resolution.

to provide near uniform illumination of detector arrays, such as those used in GMAPD, spL, and
flash LIDAR systems. In this domain, product resolution is limited by two primary effects of the
optics system. Resolution of instantaneous views is limited by the projected 1rov footprint. For
systems that employ coincidence processing, like GMAPD systems, the instantaneous resolution is
typically significantly improved, but is ultimately limited by the diffraction limit of the optics.
As an aside, the primary alternative strategy for illuminating detector arrays involves the
use of a diffraction element to split a single transmit beam into multiple beamlets that are aligned

to respective detector elements. This design approximates an array of systems as illustrated in

Figure 6.5b, and so is covered by the general treatment just presented.
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6.6.1 Basic Resolution Prediction Model

By examining the resolution limits of each of the system design domains presented, we can
establish a basic prediction model for achievable system resolution. This model assumes that the
system is well-focused, aberration-free, and disregards several known effects including (i) noise,
(ii) atmospheric scintillation, (iii) crosstalk, and (iv) convolution of the LASER pulse range profile
with the target at high obliquities. At this point, the prediction accuracy of the proposed model is
completely unverified. As such, the model remains purely conjecture and the model is proposed
for future development and validation beyond the scope of this dissertation research.

To develop the basic resolution model, first consider the optics-limited case. The resolution
limit of an optical system is established as the minimum separation of equally-intense point
sources whereby each source is independently identifiable. For telescopes, there are four primary
criteria used to estimate this limit, as illustrated in Figure 6.6: (i) the Rayleigh criterion [184],

(ii) the Dawes criterion [185], (iii) the conventional criterion, and (iv) the Sparrow criterion [186].

(a) Rayleigh (1.22) b) Dawes (1.02) (c) Conventional (1.00) d) Sparrow (0.95)

2 1 0 1 2 3 4 5 S 4 3 2 1 0 1 2 3 4 5
AD D

(e) Rayleigh (1.22) (f) Dawes (1.02) (g) Conventional (1.00) (h) Sparrow (0.95)

Figure 6.6: Comparison of telescope resolution limit criteria.
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Each of these criteria relate the angular resolution limit of a telescope with a circular
aperture to the aperture diameter. The first of these criteria to be established, the Dawes criterion
[185], introduced the interdependence between telescope aperture and resolving power. His
criterion was determined empirically through the survey of experienced astronomers observing
double stars through multiple instruments. Later, Rayleigh [184] recognized that resolving power
varies with aperture size due to diffraction effects which, in turn, introduced an additional
dependence on the wavelength of observed light. While Rayleigh [184] explains the physical
phenomena that limit resolving power, his proposed criterion for determining point sources to be
independently resolved was found to be an overly conservative estimate of the resolution limit
claimed by experienced astronomers, as evidenced by Dawes [185]. However, the Dawes criterion
was established through observation of panchromatic sources, not monochromatic sources. Thus,
to relate the Dawes criterion to the diffraction model proposed by Rayleigh, a median visible
spectrum wavelength of 550 nm is assumed. Under this relationship, the resulting angular scale
factor is only about 2 % greater than unity. Simply setting the scale factor to unity establishes the
conventional criterion that is frequently encountered for estimating telescope resolving power.
Interpreted another way, the conventional criterion is simply the Dawes criterion assuming a
562 nm source instead of a 550 nm source.

Unsatisfied with the disparity between the Dawes criterion and the Rayleigh criterion, as
well as the ubiquitous application of the overly conservative Rayleigh criterion, Sparrow [186]
derived a resolution limit criterion that is mathematically justifiable, adheres to the Rayleigh
diffraction model, and whose scale is consistent with the Dawes criterion. His criterion establishes
the distance at which the deep between the two point sources completely disappears in the
combined intensity signal. As such, the Sparrow criterion is the absolute minimum possible
resolution limit between two equally intense point sources.

Understanding the genesis of each of these criteria, we can now make an informed decision
on which to select as the basis of our optics-limited model. Since the model disregards several

known effects, the psF is unlikely to be oversampled, and the telescope we are evaluating will be
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used to observe non-point sources, it seems reasonable to select the more conservative Rayleigh
criterion, which is given by (6.4). Here, 64 is the estimated diffraction limited angular resolution,
J1.1 is the first null of the first order Bessel function of the first kind, A is the wavelength of the

LASER, and a and D are respectively the telescope aperture radius and diameter.

) jiiA 3.83 4
sin(Og;gr) = E ~ —— =122

—5~ (6.4)

A
D
The angular resolution limit can be converted to a spatial resolution limit at range by projecting

along the line of sight as illustrated by (6.5).
Mgier = Rtan(Ogifr) (65)

Next, consider the beam-limited case. The vast majority of ALS systems use LASERs with
a Gaussian, or nearly Gaussian, cross-sectional profile. The beam profile and shape quality are
often reported by one or more beam divergence measures. The most frequently used divergence
measure is the !/ width (2w) that describes the angular spread between the central-most points
where the beam peak intensity (Iy) is reduced by a factor of /e This is an important characteristic
measure for Gaussian beams because it can be used to completely describe the beam profile
through (6.6) where I(x) is the profile optical intensity at an angular distance (x) from the beam
center.
2
I(x) = e ¥ (6.6)
Ultimately, beam-limited resolution is related to the beam divergence. For the case that the LASER
beam spread over-fills the detector 1Fov, the beam spread can be taken to be limited by the
detector 1FOV.
Finally, consider the sampling-limited case. As illustrated in [81], the most efficient recovery
of both texture and structure is achieved with a Fcc sampling lattice. When this sampling lattice
is used, features are recovered with an approximately 13.4 % increase in efficiency. Thus, if we

assume that one resolution element, or resel, is equivalent to two samples separated by the Nps
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(), then the sampling limit on achievable resolution (Afs,y) is given by (6.7).

3 3
Msamp = Zrﬁ = rﬁ ~ 1.73r (6.7)

This relationship may be represented more generally for other sampling lattices as (6.8).

2r

Mgamp = - (6.8)
t

Next we must establish a means of combining the different resolution limiting effects into
a single estimate. We propose treating each as a source of standard error so that each effect can be
combined according to a standard error model. Once the terms have been combined, estimate the
resolution limit by fitting an Airy disk to the resulting Gaussian term and deriving the limit based
on (6.5). To convert the Airy disk for a circular aperture to a standard error term requires finding
the best Gaussian fit as described by Zhang, Zerubia, and Olivo-Marin [187], [188]. The best-fit
Gaussian is assumed to be zero-mean and is thus wholly described by the standard deviation

according to (6.9).

A
ogiff = Rtan (sin_1 <0.421—))> (6.9)

Converting the beam spread to a standard error term is trivial due to the assumed Gaussian profile
of the beam described by (6.6). Under this model, the standard deviation of the beam term is
simply one quarter of the !/ width. However, recall that over filling the detector 1FOV acts as a
practical limit to the beam spread impact on resolution. The upper bound on this limit assuming a
uniform spread of photons within the detector 1rov. Thus, the resulting error term is given by

(6.10).

w 0
Obeam = Rtan(min{z, \I/Fliz‘]}) (6.10)

Finally, converting the sampling limit to a standard error term is achieved by assuming a
uniform distribution of reflected photon sources within the sample cells. This assumption leads to

the standard deviation for sampling under an rcc lattice as (6.11).
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o, =— == 6.11
samp \/ﬁ 2 ( )
Again, this may be represented more generally for other sampling lattices as (6.12).
AL r
=P (6.12)

0. = — =
samp \/ﬁ St\/§

Combining the error terms is straight-forward in the normal way through a root squared

summation of the independent error terms as given by (6.13)

_ 2 2
Ototal = \/ (Gszamp + Opeam T O-diff) (6.13)

Once the total error term is estimated, we can convert to an estimated resolution limit by inverting

the relationship in (6.9) and converting to a Rayleigh criterion.

Ototal
Niotg = 1.22 0.42

= 2.900-t0tal (614)

6.6.2 Proposed Assessment Approach

Development of product resolution assessment approaches remains an open research area. How-
ever, significant research in this area has been published by Miles et al. [126] and Duan et al.
[76]. The detriments of the proposed approaches are identical to those previously discussed in
Section 6.5.2. Specifically, Miles et al. [126] require specially constructed calibration targets and
Duan et al. [76] require point cloud conversion to depth images. Likewise, it remains ideal to
establish a compromise approach where the factors considered by Miles et al. [126] and Duan et al.
[76] are assessed, but by evaluating the point clouds directly as in [126] and using serendipitous

targets as in [76].
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CHAPTER 7:
CONCLUSION

This dissertation has focused on the field of airborne topographic mapping and remote sensing
through the use of ALs systems to produce high-fidelity L1DAR point cloud products. We recognized
the growing ubiquity of LIDAR point cloud products and the unfortunate gaps remaining in
establishing a comprehensive LIDAR DQAF with sufficient focus on product usability and fitness
for purpose. We understood that these gaps have led to confusion in product assessment and bloat
in product sizes. Consequently, we endeavored to resolve confusion through a close examination
of quality factors impacting point cloud usability and made several significant contributions to
the research area.

Chapter 3 closely examines the sources of information content in point cloud data. The
examination is careful to consider point attribution as well as spatial coordinates as potential
contributors to the overall information potential of point cloud data. The relative contribution of
individual points to the overall information content of the cloud is estimated through localized
assessment of attribution and spatial coordinate entropy. The per-point entropy estimates are
then leveraged to construct a salience measure to estimate the potential loss of information due
to point removal. We demonstrated that this salience measure can be leveraged to significantly
reduce the population of points in a cloud while minimizing information content loss if points are
carefully removed. This demonstration illustrated that while a large portion of points in the cloud
may be considered redundant, identification of salient points requires consideration of both point
structure and attribution. While this result may appear to be intuitively obvious, it is significant
since prior mesh-free simplifications approaches only considered the contributions of spatial

coordinates to point cloud information potential. Surprisingly, the exclusion of point attribution
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from the pDQ assessment of LIDAR point clouds is a trend that we have observed continuing even
into recent studies [76]. Thus, while the developed mesh-free simplification approach is ultimately
an infeasible method for efficiently representing LIDAR point cloud data, the developed salience
measure establishes an important finding that guides subsequent research in evaluating and
efficiently preserving the information potential of point cloud models.

Chapter 4 builds on the findings from Chapter 3 to develop methods that efficiently sample
scenes under uniform lattice-constrained sampling (Lcs). We established scale factors for the
lattice constraints that preserve specific point cloud traits between selected lattice constraints.
Several of the developed constraints and associated scale factors offer improved sampling effi-
ciency or robustness to voids when compared to sc lattice sampling that is representative of
typical voxel-based approaches. Significantly, we determine that the rcc lattice offers improved
sampling efficiency when considering preservation of both structure and texture information.
This is an important finding since previous results concluded that 3 sampling is most efficiently
achieved with a Bcc lattice when only structure information is considered and wave-number
limits are assumed. Furthermore, we presented two forms of Lcs that offer subtle differences in
the preservation of fine feature details in point clouds. We also addressed the primary sampling
artifact that manifests with Lcs and provided a mitigation strategy. We demonstrated how Lcs
may be employed to generate point cloud LoDps with a specialized approach given for single-
photon and GMAPD LIDAR systems. Finally, we presented multiple approaches to representing
LoD representations and developed an approach for determining the conditions under which each
method is the more efficient solution.

Chapter 5 examines biases in the current bQ assessment approaches for LIDAR point
cloud sample spacing and density. We addressed limitations in current assessment approaches
resulting from assumptions based on legacy LMAPD point scanning systems. Specifically, we
developed approaches that enable dimensionality reduction of 3D data sets for 2D NPs and
NPD assessment without prior knowledge of expected sampling rates and regardless of return

numbering attribution. This contribution is especially significant for single-photon sensitive
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LIDAR data and sFM point cloud data that do not produce multiple return per pulse attribution.
We developed NpPs and NPD assessment methods that mitigate demonstrated deficiencies in
current approaches by avoiding biasing measurements away from known collection and product
generation constraints. This contribution provides greater confidence in sampling assessments and
enables data producers to stop oversampling data simply to pass product acceptance assessments.
Additionally, we provided a revised definition of “nominal” spacing and density measurements and
illustrated a method of establishing confidence intervals in the assessed measurements. Finally,
we demonstrated that our proposed assessment method applies equally to legacy LmAPD data
sets as well as GMAPD data sets eliminating the need for special considerations for either sensor
phenomenology.

Chapter 6 provides an initial treatment of the factors perceived as remaining gaps in
assessing and predicting LIDAR point cloud usability and information potential. We provided
detailed discussion on additional assessment methods and prediction models that address the
photo-interpretable quality factors influencing L1DAR product usability. Specifically, we discuss
prediction and proposed assessment of surface and intensity resolution as well as consideration of
approaches similar to those developed for imagery assessment under the G1QE. Having previously
established the importance of texture attribution to the overall information potential of point cloud
products in Chapter 3, we pay particular attention to predicting and assessing intensity resolution,
dynamic range and SNR for LIDAR point cloud products. Recognizing the prior disparities that have
arisen between traditional LMAPD point scanning products and single-photon sensitive GMAPD
products, we discuss specific considerations for GMAPD intensity computations. Specifically, we
caution against the potential compression or inversion of relative reflectivity responses that arise
when these sensors are operated to efficiently detect surfaces in high background environments.
This result is of particular interest because it is a counterintuitive phenomenon that manifests
specifically due to blocking loss in GMAPD detectors. As a whole, this chapter is intended to
provide the foundations for completing development of a comprehensive LIDAR DQAF with a

particular focus on product usability and information potential. It also demonstrates how the
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improved understanding of usability and information content factors can inform the design of
collection planning systems to maximize the information potential of LIDAR point cloud products.

In conclusion, this dissertation has demonstrated approaches to generate efficiently sam-
pled LIDAR point clouds that maximize product information potential. In several cases the devel-
oped approaches have differed from commonly encountered guidance and on multiple occasions
we encountered results that differed from our intuitions. We hope that the findings presented
in this dissertation will contribute to a reassessment of current LIDAR point cloud specification,
formation, and evaluation approaches. Furthermore, we look forward to witnessing the continued
development of LIDAR DQ assessment from an information content and usability perspective and

sincerely hope that our contributions facilitate this ongoing research.
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