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Abstract— In the last several years, airborne topographic light
detection and ranging (LiDAR) has emerged as an important
remote-sensing technology supporting a wide variety of appli-
cations. In that time, researchers have conducted studies to
determine the optimal sampling densities required to support
their respective applications. This natural progression of exper-
imentation and analysis has resulted in several recommended
sampling density stratifications for LiDAR point cloud prod-
ucts. Recognizing the need for point clouds of varying sample
densities provides at least two motivations for creating level of
details (LOD) for high-resolution point clouds. First, from the
perspective of LiDAR data consumers, there is a desire to use
the coarsest sampling that supports the application to reduce
procurement costs, storage constraints, and processing times.
Second, from the perspective of LiDAR data providers, there
is a desire to collect data once at the highest supported fidelity
to minimize recollection costs and redundancy in data holdings.
In this article, we present an approach for generating point
cloud LODs by constraining samples to regular discrete lattices
to optimize the coverage of the volumes represented by each
sample. We compare our approach to the two most common
point cloud sampling methods: random sampling and rectangular
lattice sampling. We discuss two approaches for representing
the point cloud LODs. Finally, we propose an extension of our
sampling approach for processing single-photon and Geiger-mode
avalanche photodiode (GmAPD) LiDAR.

Index Terms— Light detection and ranging (LiDAR),
nonuniform sampling, point cloud, sampling methods, stratified
sampling.

I. INTRODUCTION

A IRBORNE topographic light detection and rang-
ing (LiDAR) systems provide accurate remotely sensed

3-D georeferenced data sets for use in geographic information
system (GIS) applications. LiDAR data is leveraged across
several domains including wide-area mapping (WAM), cor-
ridor mapping, hazard risk assessment, vegetation mapping,
resource management, building modeling, change detection,
and feature classification [1], [2]. Establishing sampling opti-
mality and sensitivity for LiDAR applications is important
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since the procurement of LiDAR data must balance sampling
density, data size, and the reliability and accuracy of the
models derived from the data with collection, processing,
storage, and access costs [3]. Product accuracy and sampling
fidelity requirements vary significantly across the applications
supported by LiDAR data. Extensive research and analysis has
been conducted in the domains of terrain mapping for flood
and hazard assessment [3]–[7], forestry and land management
[8]–[14], and building modeling [15]–[19] to determine the
optimal sampling fidelity required to support various applica-
tions within each respective domain.

Domain studies have typically evaluated the impact of
sample spacing (i.e., the horizontal distance between adjacent
samples) or sample density (i.e., the number of samples per
unit area) on the performance of algorithms and assessment
techniques. Sample spacing and sample density are considered
key characteristics of point cloud data, similar to ground sam-
ple distance (GSD) and spatial resolution for photogrammetric
data. Point cloud products are regularly examined to determine
a nominal point spacing (NPS), represented in this article by r ,
or a nominal point density (NPD), represented in this article
by ρ [20]. These two metrics are frequently related to each
other by

ρ =
�

1

r

�2

. (1)

However, this is a relationship that is only valid for sam-
ples taken on a square lattice. While LiDAR collections are
typically planned to be as uniform as possible, the resulting
point clouds are generally unstructured and may not agree
with this underlying assumption. Furthermore, NPD is typ-
ically used to characterize data sets that have an expected
sampling density greater than 1 pls/m2, whereas NPS is used
otherwise [21]. Given the assumed relationship between NPS
and NPD, the complementary metric is often computed rather
than measured.

The following selection of studies illustrates the stratifica-
tion of optimal sampling levels that has emerged in the last
several years.

Raber et al. [4] presented a study assessing the impact of
LiDAR NPS on digital elevation model (DEM) accuracy and
flood zone delineation. In this article, the researchers simulated
low-density LiDAR collections by using a simple count-based
decimation strategy within scan lines of linear-mode LiDAR
data to thin points in the cross-track direction and dropped
entire scan lines in the along-track direction to achieve a
relative uniformity in their thinned data sets. This approach
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allowed the researchers to emulate point clouds collected with
NPS of 1.35–9.64 m. Perhaps, the most important finding
from their study was, “the absence of … a significant pattern
relating error in DEM accuracy to post-spacing through the
range of post-spacing values tested.” [4, p. 802] The authors
further emphasized the significance of this finding by stating,
“This is an important finding since it implies that more LiDAR
data is not always beneficial in the flood mapping application,
especially when cost is considered. Further, these findings
suggest that there may be certain cases where having more
data is not only redundant, but may increase error in the final
product” [4, p. 802].

Magnusson et al. [8] presented a study assessing the
robustness of forest characterization metrics derived from
LiDAR data with respect to the NPS of the collection. In this
article, the researchers developed a technique for thinning
point clouds to simulate low-density collections by enforcing
a minimum horizontal distance between adjacent returns. The
synthesized data sets in their study emulated collections with
NPSs of 1–15 m and were evaluated to determine their impact
on calculating various characteristic attributes of forests. This
article concluded that while estimation accuracy degraded as
the thinning level increased, the degradation was gradual up to
an NPS of 10 m. Furthermore, the accuracy of the attributes
obtained, even at an NPS of 15 m, were at least equivalent to
those commonly obtained using traditional photogrammetric
methods.

Ruiz et al. [11] independently confirmed the results of
the study performed by Magnusson et al. [8] in their study
that examined the combined effects of plot size and LiDAR
density on forest structure attribute estimates. This article
found that while LiDAR density has a slight influence on the
derived models, plot size was the dominant factor in estimating
structure attributes. This article concluded that the optimal
NPD for forest structure attribute estimation is in the range
of 1–5 pls/m2.

In a similar study, Hansen et al. [13] examined the impacts
of LiDAR density on digital terrain model (DTM) and canopy
metrics in tropical rainforests. The results of the study largely
echoed the findings of Ruiz et al. [11], with a slightly coarser
NPD recommendation of 0.5 pls m−2.

Vauhkonen et al. [9] examined the effects of LiDAR sam-
pling density on finer structures, expanding the work previ-
ously done on forest-level estimation to tree-level estimation.
The authors adapted the thinning approach introduced by
Magnusson et al. [8] to be based on rectangular rasters
of increasing cell size. The NPD of the sample data
sets were significantly greater than those evaluated by
Magnusson et al. [8], emulating collections with NPDs
of 0.6–25 pls/m2 (equivalent to NPSs of 0.2–1.3 m). The
authors concluded that while NPD on the order of 12 pls/m2

were typical for LiDAR collections supporting tree-level appli-
cations, a coarser point density on the order of 3 pls/m2 was
sufficient for species identification and calculating character-
istic attributes of the tree species evaluated.

The studies presented above are not exhaustive; rather, they
illustrate the formal research that has informed the establish-
ment of NPD strata for LiDAR point cloud products based

TABLE I

COMMON POINT DENSITIES [22]

TABLE II

USGS NGP/3DEP QUALITY LEVELS [21]

TABLE III

EXAMPLES OF VERTICAL ACCURACY AND RECOMMENDED LIDAR POINT
DENSITY FOR DIGITAL ELEVATION DATA ACCORDING TO THE NEW

ASPRS 2014 STANDARD [23]

on use case and phenomenology. Isenburg [22] summarized
several common product levels that have emerged through
this process in Table I. Formally, NPD recommendations are
being codified as one aspect of LiDAR product specifications.
Both the American Society for Photogrammetry and Remote
Sensing (ASPRS) [23] and the United States Geological
Survey (USGS) [21] provide sampling recommendations for
LiDAR products as illustrated by Tables II and III. Note that
USGS distinguishes the metrics of aggregate NPS (ANPS) and
aggregate NPD (ANPD) from NPS and NPD to describe the
net overall pulse spacing and density, respectively, for prod-
ucts generated from multiple coverages. For single coverage
products, the aggregate and nonaggregate metrics are identical.

Previously, the Petersen–Middleton theorem [24], [25] has
been leveraged to establish sampling and reconstruction strate-
gies in parallel domains including seismology [26], computed
tomographic reconstruction [27], and periodic nonuniform
sampling [28]. In this article, we apply the Petersen–Middleton
theorem [24] to establish a strategy for sampling point
clouds to generate level of details (LOD) which seek to
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Fig. 1. Bases for (a) SC, (b) BCC, and (c) FCC lattices transformed for sampling point cloud data. Central sites are connected to NNs.

optimally enforce one of the following constraints: 1) resample
to a desired interpoint spacing; 2) resample to a desired
point density; 3) resample to a desired number of points;
4) resample to a desired texture resolution; and 5) resample
to a desired spatial resolution. Preliminary analysis of our
approach was presented via poster at the ASPRS 2019 Annual
Conference [29].

The general organization of this article is as follows.
Section II describes our sampling approach. Section III dis-
cusses approaches for representing the point cloud LODs.
Section IV discusses our sampling approach for process-
ing single-photon and Geiger-mode avalanche photodiode
(GmAPD) LiDAR. Section V describes our evaluation
approach. Section VI summarizes the comparison of our
approach to the two most common point cloud sampling
methods: random sampling and rectangular lattice sampling.
Section VII is a summary.

II. APPROACH

The Petersen–Middleton theorem [24] provides the condi-
tions for perfect reconstruction of wavenumber-limited func-
tions from samples on regular discrete lattices. Similar to the
Nyquist–Shannon sampling theorem, the conditions for perfect
reconstruction are seldom realized in real-world applications;
however, the theorem still provides practical guidance for
establishing optimal sampling lattices for an n-dimensional
field to an objective wavenumber limit. Indeed, it is this
theorem that provides the result that optimal sampling for 2-D
wavenumber-limited isofunctions is achieved with a hexagonal
lattice and that optimal sampling for 3-D wavenumber-limited
isofunctions is achieved with a body-centered cubic (BCC)
lattice. These two results inform the selection of opti-
mal sampling lattices for objective texture and spatial
resolutions.

Using the same approach as Petersen and Middleton [24]
to determine optimal sphere packings in the spatial domain
versus the spectral domain provides a means for selecting
lattices that optimize point spacing and point density metrics
instead of texture and spatial resolution. Furthermore, while

there are infinitely many lattices that could be used to sample
3-D spaces, we find that only three appear in the context of
optimal sampling lattices in R

3: 1) the simple cubic (SC)
lattice; 2) the face-centered cubic (FCC) lattice; and 3) the
BCC lattice [30]. The SC lattice is often considered to be
the natural choice for a sampling lattice since it establishes
a Cartesian coordinate system. However, the FCC and BCC
lattices arise as alternative sampling lattices as a result of dense
sphere packing in the spectral domain and the subsequent
transformations to the spatial domain. The three lattices and
their respective coordinate systems are illustrated in Fig. 1.

A. Basis Selection

A lattice (�) that spans the n-dimensional real vector space
(Rn) is given by

� = L (B) = �
Bc:c ∈ Z

n ∧ det (B) �= 0
�

(2)

where

B = �
v1, . . . , vn

�
(3)

is the matrix of basis vectors known as the generating or
sampling matrix. The sampling matrix establishes a hypercubic
coordinate reference frame for the vector space spanned by �,
where the basis vectors, v1, . . . , vn , are the frame axes and
coordinates, c ∈ Z

n , define the sample sites. The sampling
matrix and its inverse thus represent the changes of basis
between the vector space representing the sampling reference
frame and the vector space representing the world reference
frame.

The sampling matrix for each of the lattices we use
are straightforward to establish directly. The SC sampling
matrix ⎡

⎣1 0 0
0 1 0
0 0 1

⎤
⎦ (4)
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establishes adjacent sample sites at adjacent cube corners,
the FCC sampling matrix

⎡
⎢⎢⎢⎢⎢⎣

0
1

2

1

2
1

2
0

1

2
1

2

1

2
0

⎤
⎥⎥⎥⎥⎥⎦ (5)

establishes adjacent sample sites at adjacent cube face centers,
and the BCC sampling matrix

⎡
⎢⎢⎢⎢⎢⎣
−1

2

1

2

1

2
1

2
−1

2

1

2
1

2

1

2
−1

2

⎤
⎥⎥⎥⎥⎥⎦ (6)

establishes adjacent sample sites at adjacent cube body centers.
While there are infinitely many ways to orient and scale the
basis vectors for each sampling lattice, we take the approach of
ensuring two of the basis vectors span the Cartesian xy-plane,
which is typically parallel to the ground plane for LiDAR
data sets. Furthermore, we normalize the basis vectors to
establish a normal basis for the vector space so that a default
scaling will preserve the same interpoint sample spacing in
each sampling lattice. For the SC and FCC sampling matrices,
we further constrain the basis vector arrangement by aligning
one basis vector with the x-axis, which typically points in the
easting direction for LiDAR data sets. This means that the SC
sampling matrix is simply identity. The BCC basis vectors,
however, do not form a regular tiling of the xy-plane. Thus,
instead of aligning a basis vector with the x-axis, we choose
to orient the basis vectors so that they are reflexively sym-
metric about the y-axis, which typically points in the northing
direction for LiDAR data sets. The final set of fundamental
sampling matrices that we use are thus

BSC =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ (7)

BFCC =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

2

1

2

0

√
3

2

√
3

6

0 0

√
6

3

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

and

BBCC =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
6

3
−
√

6

3
0

√
3

3

√
3

3
−
√

3

3

0 0

√
6

3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

B. Spacing Scale Factors

With the sampling matrices established as described in
Section II-A, lattice sites are arranged as groups of planes
in R

3. The SC lattice forms square lattices within the planar
groups. The groups are arranged with lattice sites located
directly above each other with a separation equal to the
minimum distance of the lattice. Both the BCC and FCC
lattices have planar groups that are separated by a factor of√

6/3 of the minimum distance of the lattice. The BCC lattice
sites form an irregular hexagon lattice within the planes and
the planar groups alternate in an ABAB sequence. The FCC
lattice sites form a regular hexagon lattice within the planes
and the planar groups are arranged in a repeating ABCABC
sequence.

This arrangement of basis vectors allows us to indepen-
dently control the sampling intervals in the horizontal and
vertical directions, denoted by rh and rv , respectively. Since
each fundamental sampling matrix is designed so that the
first two basis vectors span the xy-plane, the fundamental
vertical separation between planar groups is always given by
the sampling matrix element b3,3. Thus, the lattice basis is
scaled to achieve the desired sampling rates with the matrix

S =

⎡
⎢⎢⎣

rh 0 0

0 rh 0

0 0
1

b3,3
rv

⎤
⎥⎥⎦ . (10)

To achieve a uniform scaling of the sampling lattice, we estab-
lish the sampling interval with rh and automatically compute
the desired vertical separation of planar groups as

rv � b3,3rh . (11)

C. Characteristic-Preserving Scale Factors

Next, we establish a set of scale factors for each lattice
that allows us to target a specific characteristic to preserve
during the point cloud sampling. The scale factors we compute
preserve the following characteristics: 1) interpoint spacing:
scales the sampling lattices so that the interpoint distance
between nearest neighbors (NNs) match; 2) ground-plane
sampling density: scales the sampling lattices so that the
sampling densities of the xy-plane match; 3) number of sample
sites: scales the sampling lattices so that the sampling densities
(thus, the expected number of sample sites) in R

3 match;
4) texture resolution: scales the sampling lattices so that the
circular support regions in the spectral domain match; and
5) spatial resolution: scales the sampling lattices so that the
spherical support regions match in the spectral domain.

To preserve the interpoint spacing between the sampling
lattices, the magnitudes of the basis vectors must be scaled to
match. Since we establish the fundamental sampling matrices
with normalized basis vectors, the spacing-preserving scale
factor is simply the multiplicative identity

si = 1. (12)
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Fig. 2. Eight unit cells of (a) SC, (b) BCC, and (c) FCC lattice, indicated by dotted grey lines. The Voronoi cell for each of the central lattice sites is
indicated with black lines. Adjacent sites are colored according to the respective descriptions.

The sampling density of a lattice is computed from the
hyper-volume of its fundamental parallelepiped:

d(�) = |det (B)| (13)

that is, the hyper-volume of the parallelepiped representing
the region enclosed by the basis vectors. By definition, there
is exactly one sample site within each fundamental paral-
lelepiped region, which implies that the sampling density is
simply the inverse of this volume

ρ = 1

d(�)
. (14)

Thus, to preserve the sampling density in R
3, the scale factor

is set to normalize this density

sp = 3
�

d(�). (15)

To preserve the sampling density in the xy-plane
between the sampling lattices, we leverage the fact that we
oriented the sampling matrices so that two of the basis vectors
span the xy-plane. This means that we can use the same
density normalization approach as above, but restricted to just
the first two basis vectors

sd =

��[B]3,3

�� (16)

where [B]3,3 is the (3, 3) minor determinant of the sampling
matrix.

The final two scale factors are selected to preserve the
radial support for wavenumber-limited functions in the spectral
domain without aliasing and are therefore related to the
reciprocal lattice:

� = L ��B� = L
�

B−T
�

(17)

where

˜B = ��v1, . . . ,�vn
�

(18)

is the dual space sampling matrix. The scale factors are defined
by the diameter of the largest n-D ball constrained to a
Voronoi region of the lattice. This distance is given by the
distance between the NN spectral repetitions which is simply

TABLE IV

FEATURE-PRESERVING SCALE FACTORS FOR SAMPLING LATTICES

the minimum magnitude of the dual space basis vectors. Thus,
to compute the scale factor that preserves texture resolution in
the xy-plane, we consider only the upper-left 2 × 2 submatrix

B (3, 3) = [u1, u2] (19)

resulting from the elimination of the third row and columns
from the matrix B. We then compute the minimal magnitude
of the basis vectors for the dual space

st = min
i
��ui�2. (20)

The scale factor that preserves the spatial resolution in R
3 is

similarly computed as

ss = min
i
��vi�2. (21)

Table IV provides the values of the scale factors described
above for the SC, FCC, and BCC lattices.

The volumes represented by each sample site are given by
the Voronoi tessellation of the lattice as illustrated in Fig. 2.
Since each sample site is identical within �, each volume
is an identical unit cell that has the property of being a
space-filling polyhedron as illustrated in Fig. 3. By comparing
the relative sizes of the representative volumes under dif-
ferent scaling factors, we can establish the expected relative
sampling efficiency between the sampling lattices. Table V
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Fig. 3. Voronoi tesselations of (a) SC, (b) BCC, and (c) FCC lattices. Individual cells colored randomly to illustrate the structure.

TABLE V

DISCRETE LATTICE SAMPLES RELATIVE TO SC LATTICE (�%)

summarizes the expected relative number of samples for each
preservation strategy using the SC lattice as a reference. This
table illustrates that, as predicted by the Petersen–Middleton
theorem, the BCC lattice provides the most efficient sampling
that maintains spatial resolution; however, resolving features in
texture—like changes in intensity within the ground plane—is
less efficient than the FCC lattice. The FCC lattice, while not
as efficient at maintaining spatial resolution, is the only lattice
considered that provides improvements in sampling efficiency
for both spatial and texture resolution.

D. Preliminaries

Our sampling algorithms assume the existence of NN
search (NNS) algorithms in metric spaces with a run-time
complexity of no worse than O (log n). Specifically, we require
a k-NN (k-NN) search with a Euclidean distance metric
for both nearest-center NC sampling and mass point (MP)
sampling. MP sampling additionally requires a radially NN
(r -NN) search with a Chebyshev distance metric. We assume
that the points are spatially indexed with the appropriate dis-
tance metric and that the index structure provides appropriate
interfaces for the respective searches. Algorithm 1 details the
behavior of the k-NN search, while Algorithm 2 details the
behavior of the r -NN search. Any metric tree or binary space
partitioning tree data structure can satisfy the requirements of

Algorithm 1 k-NNs
Require:
� A database of points, D, spatially indexed with a distance

metric, d (a, b)

� A query point, q

� A neighborhood size, k ∈ N

1: function KNN(D, q, k)

2:

N ← {A ⊆ D : |A| = k,�∀x ∈ A, x� ∈ D \A�
�
d (x, q) ≤ d

�
x�, q

�� �
3: return N
4: end function

Algorithm 2 r -NN
Require:
� A database of points, D, spatially indexed with a distance

metric, d (a, b)

� A query point, q

� A neighborhood reach, r ∈ R

1: function RNN(D, q, r )

2:
N ← {A ⊆ D : �∀x ∈ A, x� ∈ D \A�

�
d (x, q) ≤ r < d

�
x�, q

�� �
3: return N
4: end function

the search algorithms. For our implementation, we leveraged
vantage point trees [31] for the spatial indexing data structure.

E. NC Sampling

The first algorithm we develop is NC sampling. This
approach most closely matches uniform sampling on a regular
discrete lattice with the added constraint that all samples
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Algorithm 3 NC Sampling

� Select points from point cloud P nearest to lattice sites
in L (B)

1: function NCSAMPLE(P , B)
� Change points to sampling coordinate frame

2: PB ←
�

B−1 p : p ∈ P �

� Identify occupied Voronoi cells of the lattice
3: C← {COMPONENTWISEROUND(x) : x ∈ PB }

� Spatially index points for efficient search
4: DE ← EUCLIDEANINDEX(PB)

� Identify sample points
5: S ← ∅

6: for all c ∈ C do
� Find the closest point to the lattice site

7: s← KNN(DE, c, 1)

� Ensure adjacent sites are not aliased by the
candidate

8: if c ≡ COMPONENTWISEROUND(s) then
9: S ← S ∪ { Bs }

10: end if
11: end for

12: return S
13: end function

belong to the set of observations instead of to the set of
lattice sites. NC sampling, as detailed in Algorithm 3, proceeds
by first transforming all points into the sampling coordinate
frame. Within this reference frame, the lattice sites associated
with each occupied Voronoi cell are computed by performing a
componentwise rounding of the point coordinates. Next, initial
sample candidates are selected by identifying the points closest
to each query lattice site. However, this process does not
guarantee that the candidates occupy the same Voronoi cells
as their respective lattice sites. Candidates appear in Voronoi
cells adjacent to the query lattice site whenever two conditions
are met. First, the query cell must be occupied only by points
in “corners” of the cell. That is, when the occupying points fall
outside the sphere inscribed within the cell (recall that within
the sampling reference frame, all Voronoi cells are cubes).
Second, at least one point in an adjacent cell must be within
the sphere circumscribing the cell and closer to the lattice site
than any point within the cell. In this case, the closest point to
the lattice site will appear in an adjacent cell, thus acting as
a form of aliasing. Checking for this condition is achieved by
ensuring that the query lattice site and the lattice site associated
with the candidate are identical. If not, then the candidate
is rejected and the Voronoi cell is unrepresented in the final
sample set. The final samples are produced by transforming
the selected candidates back to the world coordinate reference
frame. This final step is unnecessary if selected points can be
identified by other means, such as a globally unique identifier.

Algorithm 4 MP Sampling

� Select points from point cloud P nearest to centers of
mass of Voronoi regions in L (B)

1: function MPSAMPLE(P , B)
� Change points to sampling coordinate frame

2: PB ←
�

B−1 p : p ∈ P �

� Identify occupied Voronoi cells of the lattice
3: C← {COMPONENTWISEROUND(x) : x ∈ PB }

� Spatially index points for efficient search
4: DC ← CHEBYSHEVINDEX(PB)
5: DE ← EUCLIDEANINDEX(PB)

� Identify sample points
6: S ← ∅

7: for all c ∈ C do
� Find points in the Voronoi region about the site

8: N ← RNN(DC, c, 1
2 )

� Compute the center of mass for the region
9: m← AVERAGE(N )

� Find the closest point to the mass-point
10: s← KNN(DE, m, 1)

� Ensure adjacent sites are not aliased by the
candidate

11: if c ≡ COMPONENTWISEROUND(s) then
12: S ← S ∪ { Bs }
13: end if
14: end for

15: return S
16: end function

F. MP Sampling

One obvious limitation of the NC sampling approach is
that an observation must be sufficiently close to the lattice
site, without falling outside the Voronoi cell, to be selected
as a representative sample. In the sampling coordinate ref-
erence frame, only (π/6) ≈ 52.36% of the volume of the
Voronoi cell matches this constraint. Cells are not sampled
when observations are biased into the “corners” of the cells
which happens most often for fine linear features and along
edges of bodies. By changing the query location from the
lattice site to the center of mass of observations within the
Voronoi cell, the number of unrepresented occupied cells is
reduced. Algorithm 4 illustrates the modifications required for
performing MP sampling.

The primary modifications that are required to support MP
sampling are an additional spatial index to enable searches
under a Chebyshev distance metric and an additional step
to compute the center of mass of observations within each
Voronoi cell. The Chebyshev metric is leveraged to quickly
identify all observations contained within the Voronoi cell
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Fig. 4. (a) NC sampling with contours. (b) MP sampling with contours.
(c) NC sampling with mitigation. (d) MP sampling with mitigation.

since the cells are balls of radius (1/2) under this metric in
the sampling coordinate reference frame. Otherwise, sampling
proceeds exactly as NC sampling, including the aliasing check.

G. Novelty Versus Voxel-Based Approaches

With the primary sampling approach defined, we can
now describe how our approach differs from rectangular
voxel-based representations similar to the approach proposed
by Stoker [32]. First, the lattice constraints are a generalization
of a rectangular voxel grid with specific lattices providing key
benefits for specific applications as detailed in Section II-C.
Second, the LOD points are down-selected from an input
cloud instead of resampled to lattice sites. This distinction
may have important implications for propagation of per-point
metadata. In fact, our sampling approach would be nearly
identical to voxel representations if we simply generated the
set of occupied voxel cells and operated only on rectangular
lattices.

H. Contour-Line Sampling Artifact and Mitigation

A consequence of allowing samples to float within the
Voronoi cells is the appearance of a visual artifact that we
named density contours. This artifact is a post-aliasing that
appears when rendering point clouds to visual displays. Since
no surface is perfectly smooth and no ranging system is infi-
nitely accurate, there is always a “thickness” for every surface
observed by LiDAR systems. If the vertical spread of the
surface—due to either texture or measurement uncertainty—is
not entirely contained within a single sampling layer, multiple
vertically adjacent sites will generate samples leading to the
appearance of the contour lines. This artifact is not unique
to our sampling approach. In fact, if we performed uniform
discrete sampling, this artifact would manifest instead as the
familiar “stair-step” aliasing associated with rasterization.

Algorithm 5 Density Contour Mitigation

�Mitigate the appearance of density contour artifacts that
arise from sampling point cloud P under the constraints
imposed by L (B)

1: function MITIGATECONTOURS(P , B)
� Change points to sampling coordinate frame

2: PB ←
�

B−1 p : p ∈ P �

� Spatially index points for efficient search
3: DE ← EUCLIDEANINDEX(PB)

� Initially, all candidates belong to the sample set
4: S ← P

� Iteratively remove aliasing candidates
5: for all s ∈ S do

� Find points in cell centered at candidate
6: N ← RNN(DE, B−1s, 1

2 )

� Remove candidate if it aliases a sample
7: for all n ∈ N do
8: if Bn ∈ S then
9: S ← S \ {s}

10: break
11: end if
12: end for
13: end for

14: return S
15: end function

While the artifact is purely a visual anomaly, similar to a
Moiré pattern, its appearance is nonetheless unexpected and
may thus be detrimental to exploitation and analysis of point
cloud data. We therefore developed an approach to mitigate
the appearance of density contours as detailed in Algorithm 5
that can be applied as a post-sampling process.

First, observe that the density contour artifact appears where
sample points are spaced closer than predicted by the lattice
constraint, that is, where the points appear to be an alias of
each other. We can thus simply check whether a sample point
is a part of a density contour artifact by searching for any
additional samples within a ball of radius one half in the
sampling coordinate reference frame. If any other samples are
identified, the point is removed from the set of samples. This
process is repeated for all samples. Pathological point removal
is not possible because of the lattice constraint used to perform
the original sampling. Fig. 4 illustrates the appearance and
mitigation of the density contour post-aliasing artifact under
both NC and MP sampling approaches.

The primary detriment of our mitigation approach is that
it is order-dependent and thus implicitly serial. We apply a
seeded random shuffle to point ordering to avoid introducing
a sampling bias through the mitigation process while main-
taining repeatable results. However, we recognize the implicit
limitations of order-dependent processing. While we recognize
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Algorithm 6 LOD Generation

� Select points from point cloud P to participate in each
level of detail (LOD) S ∈ H as constrained by lattice
bases B

1: function GENERATEDETAILLEVELS(P , B)
� Ensure the LOD set is empty

2: H← ∅

3: for all B ∈ B do
4: S ← SAMPLE(P, B)
5: H← H ∪ {S }
6: end for

7: return H
8: end function

this drawback, we defer further improvement to the mitigation
approach to future work.

I. LOD Generation

The lattice-constrained sampling (LCS) and contour mitiga-
tion approaches comprise the sampling methods leveraged for
generating each point cloud LOD. LOD generation thus pro-
ceeds in a straightforward manner as detailed in Algorithm 6.
Essentially, each LOD is an independent sampling of the input
point cloud. We do not base subsequently coarser LODs on
the immediately preceding finer level because the scales of the
lattice constraints between LODs, as illustrated in Section I
and described by (10), are usually not integer multiples of
each other. This decision has direct implications on the LOD
representation as described in Section III.

J. Algorithm Complexity

The overall algorithm complexity of both the NC and MP
sampling approaches are very similar. Given an input point
cloud (P), for n ← |P |, the conversion to the sampling
coordinate frame and identification of occupied lattice cells (C)
both take O(n) time since the operations involve only simple
multiplications and comparisons. Spatially indexing the input
point cloud takes O(n log n) time on average when metric
tree data structures are used as the indexing structure. For
m ← |C|, the identification of sample points takes O(m log n)
time on average since locating the representative point for
each occupied lattice cell involves a O(log n) search of the
spatial indexing structure. This means that, in general, LOD
generation is expected to be no worse than O(n log n) on
average even when m → n.

Generating multiple LODs is accomplished in a straightfor-
ward way by making multiple calls to the underlying sampling
function as described in Section II-I. In this case, the overall
time complexity depends largely on the number of LODs
being generated ( p). However, if each LOD results in a fixed
magnitude reduction factor ( f ), then the total number of
LODs required before the LOD cardinality is reduced to 1 is
just log f (n). Thus, the overall complexity is expected to be
O(pn log n) with a practical limit of O 
n log2 n

�
.

III. LEVEL OF DETAIL REPRESENTATION

Once the LOD point sets are identified, a decision must
be made for how to store the point sets. Several obvious
strategies include: 1) separating LODs into independent files;
2) segregating LODs into independent sections within a file;
and 3) labeling each point with the LODs they represent.

We can make a few simplifying assumptions to help trade
the various storage schemes. If we assume a single surface
with uniformly distributed points, then the NPD for the base
point cloud is estimated by

ρnom = n

A
(22)

where n is the number of points in the base point cloud and A
is the area covered by the point cloud. In practice, this formula
tends to yield inflated density estimates since there are often
multiple surfaces over the least part of the area covered for
natural scenes. However, it establishes a reasonable estimate
for the purposes of trading LOD representations.

We can similarly leverage (14) to estimate the expected
point density for each LOD, L, based on its sampling lattice
basis, BL. Recall that since we have assumed that a single
surface is being sampled, we must use the 2-D sampling
density estimate

ρL = 1��[BL]3,3

�� . (23)

Given the assumption that points in the base point cloud
are uniformly distributed over the sampled area, the estimated
probability that a point, p, is selected to represent an LOD, L,
is given by

Pr (L) = Pr (p ∈ L) = ρL
ρnom

. (24)

This estimate serves as the foundation for trading the various
proposed storage schemes.

First, if LODs are stored in separate files or file regions, then
the total expected number of points to be stored is given by

cseg = n
L�

i=1

Pr (Li ) (25)

where cseg is the expected total point count for the segregated
schemes and L is the total number of LODs.

Otherwise, if points are tagged with the LODs they repre-
sent, then the total expected number of points to be stored is
given by

ctag = n



1−

L�
i=1

(1− Pr (Li ))

�
(26)

where ctag is the expected total point count for tagged schemes.
With this approach, there is a potential savings when points
participate in multiple LODs. In fact, the optimal case is
realized when all of the coarser LODs are subsets of the finest
LOD. There is no requirement for this constraint, though,
and it is not expected in general. Furthermore, note that as
the probability of a point participating in any single level
increases, ctag converges to n.
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Given the observations above for tagged representations,
we can make a general recommendation that when the finest
LOD sampling rate is close to the input point cloud NPS,
the tagged scheme is likely to result in better storage efficiency.
When the LOD sampling rates are all very coarse with respect
to the input point cloud, there is a low probability that points
will participate in multiple LODs which implies a segregated
scheme will result in a better storage efficiency.

More formally, file sizes are expected to be dominated
by point records. Thus, the choice between segregated and
tagged representations amounts to identifying when redun-
dancy across LODs makes it more advantageous to use a
larger per-point record format. We generally assume that
the per-point LOD tag, t , is a byte-aligned bit-field where
each byte allows eight LODs to be tagged per point. Thus,
a minimum size for t can be established as

tmin =
�

L

8

�
. (27)

Ignoring header data, we can establish a test variable

x = bcseg

(b + tmin) ctag
(28)

where b is the base per-point record format size, to test for
which scheme is expected to be more efficient. When x < 1,
the segregated scheme is expected to be more efficient. Alter-
natively, when x > 1, the tagged scheme is expected to be
more efficient.

IV. GEIGER-MODE AND SINGLE-PHOTON

LIDAR PROCESSING

In some sensing modalities, specifically single-photon sen-
sitive systems like GmAPD LiDAR, the LOD generation can
be extended to sampling the base, prefiltered, point cloud
to establish the query points for filtered processing. This
approach leads to less aliasing in LODs than sampling from
a prefiltered, though potentially densely sampled, point cloud.
As explained in Section III, this approach will consequently
lead to larger point cloud sets since points that would oth-
erwise be simply support may become query points and the
potential for redundancy between LODs decreases.

V. EXPERIMENTS

To evaluate our sampling methods, we leveraged NPS and
NPD metrics calculated using approaches similar to those
developed by Naus [33]. The analysis involves computing
NPS via Delaunay triangulation of reflective surface points or
ground surface points and NPD via the dual Voronoi diagram.

We made a slight modification to the NPS analysis proposed
by Naus [33] to evaluate the entire population of Delaunay
edges instead of just the average edge length per Voronoi
cell. We made this decision because, especially in the SC
and BCC cases, the distribution of Delaunay edge lengths is
often bimodal which has the effect of skewing averages. The
root cause of the modes is easy to visualize, especially in the
SC case. The SC case is a degenerate condition for Delaunay
triangulation where a hypotenuse edge must be added for every
pair of edges connecting NN points. In this case, it is expected

Fig. 5. Observed distribution of interpoint NN spacings for samples generated
by various sampling constraints.

Fig. 6. Observed distribution of Voronoi cell point densities for samples
generated by various sampling constraints.

that there are half as many hypotenuse edges as NN edges
which is a very significant portion of the population. The BCC
case is nondegenerate, but does result in an expected bimodal
distribution due to the irregular shape of the hexagonal lattice
cells oriented parallel to ground. In this case, however, the two
modes are much closer to each other and more difficult to
separate.

To evaluate our LOD generation approach, we first compare
LCS to the two most common point cloud sampling methods:
random sampling and rectangular lattice sampling. Rectangu-
lar lattice sampling is simply LCS using an SC lattice for
the constraint. This sampling method will generally serve as
our baseline for comparison purposes. We perform random
sampling via random shuffle based on NPDs as estimated
by (22) and (23). Since our test source is GmAPD LiDAR,
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Fig. 7. Examples of directly sampled versus resampled point cloud LODs. (Top row) Directly sampled. (Bottom row) Resampled from 30 pls/m2. (a) and
(e) 1, (b) and (f) 2, (c) and (g) 4, (d) and (h) 8 pls/m2.

we are able to test generating LODs through both the base
sampling and resampling approaches described in Section IV.
We provide a comparison of both approaches.

VI. RESULTS AND DISCUSSION

We demonstrate our lattice-based sampling approaches
using a GmAPD LiDAR point cloud data set with a vari-
ety of flat surfaces, buildings, and vegetation. We chose
to demonstrate our approach with GmAPD LiDAR since
it afforded the opportunity to compare both directly sam-
pling and down-selecting data, which is not possible with
linear-mode LiDAR. This is because GmAPD data is generated
from raw measurements at several orders of magnitude more
than linear-mode LiDAR. However, GmAPD data is very noisy
and must be processed to determine which returns originated
from actual surfaces in the scene. This process results in a large
data reduction since the majority of raw measurements are
used only to support the filtering process and are not included
as part of the final product. However, our LOD generation
approach is equally applicable to all point cloud data sets,
regardless of heritage.

The directly sampled results were generated from an input
raw data set consisting of two overlapping swaths collected
with an elliptical scanning system. The raw data contains
23 836 717 direct ranging measurements within an approx-
imately 22 500-m2 area. The raw data was filtered using
coincidence processing with sample sites established by our
proposed lattice constraints as described in Section IV. The
lattice constraints were set to target a base intersample spacing
of 35 cm. The cumulative distribution of interpoint spac-
ings was computed according to the approach outlined in
Section V. Fig. 5 illustrates the observed probability densities
of interpoint spacings for the point cloud data set tested.
The SC sampling constraint, shown in bold black, serves as
the baseline for comparison. As illustrated, interpoint spac-
ing is best preserved among the sampling lattices with the

“spacing” constraint imposed. This constraint is represented
in the figure by blue lines and legend subscript “i .” Observe
that the central modes for each of SC, FCCi , and BCCi

are aligned with each other at approximately 35 cm which
was the intersample spacing provided to our algorithm. Note
the secondary mode in the SC case as predicted from the
near-degenerate Delaunay triangulation condition imposed by
the square lattice. The secondary mode is predicted to appear
at approximately 49.5 cm for perfect square lattices. Our
observations show that the secondary mode appears in this
case with slightly shorter edge length closer to 47.5 cm.

Similarly, the cumulative distribution of point densities was
computed according to the approach outlined in Section V.
Fig. 6 illustrates the observed probability densities of sampling
densities for the point cloud data set tested. Again, the SC sam-
pling constraint, shown in bold black, serves as the baseline for
comparison. As illustrated, sampling density is best preserved
among the sampling lattices with the “density” constraint
imposed. This constraint is represented in the figure by orange
lines and legend subscript “d .” Observe that the modes for
each of the SC, FCCd , and BCCd are aligned with each other
at approximately 8 pls/m2 which was the sampling density
provided to our algorithm.

Next, we compared predicted point cloud sizes with
observed point cloud sizes for directly sampled point clouds.
Since our point clouds contain a mix of 2-D and 3-D scene
content, we expect the actual samples to generally fall between
the predictions given by the 2-D and 3-D constraints. The
only case where this is not true is with the “spatial res-
olution” constraint where the 2-D and 3-D predictions are
identical and thus provide an overly restrictive prediction
range. Note that actual point counts may be slightly lower
than predicted due in part to density contour mitigation as
described in Section II-H. Table VI summarizes the results
of the experiment. As expected, under all constraints, except
“spatial resolution,” the actual number of points generated falls
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Fig. 8. LOD sample density distributions for GmAPD LiDAR point clouds
directly sampled from raw data versus LODs. Generated from 30-pls/m2

filtered data.

TABLE VI

PREDICTED VERSUS ACTUAL SAMPLES RELATIVE TO SC LATTICE (�%)

between the 2-D and 3-D predictions. Furthermore, the sample
size is generally best preserved when the “samples” constraint
is imposed. The only sample constraint that offers competitive
sample size preservation is BCCt . This is possibly due to the
fact that its prediction range spans across zero.

We were unable to develop a method to directly measure
the observed texture and spatial resolution of the point clouds
under the various sampling strategies. However, in each of
the three previous experiments, the trends for the texture
and spatial resolution constraints followed the predictions
established in Section II which leads us to believe that
the performance in the spectral domain also follows as
predicted.

Next, we tested our LOD generation approach and compared
ANPS, ANPD, and sample sizes to directly sampled point
clouds. For this experiment, we performed all sampling using
an FCC lattice and density-preserving scale factor. Fig. 7
illustrates the resampled LODs compared to their directly
sampled counterparts. Fig. 8 illustrates the distribution of

TABLE VII

QUALITY METRICS FOR DIRECTLY SAMPLED VERSUS
RESAMPLED POINT CLOUD LODS

observed densities in the resulting point clouds. Table VII
summarizes the point cloud metrics computed for each LOD.
In general, ANPD and ANPS track very closely with the
predicted values for the FCCd lattice constraint. We see that,
in general, resampled LODs have slightly sparser ANPD and
slightly coarser ANPS than their directly sampled counterparts.
We expect this result since samples are more likely to be offset
further from the lattice constraint sites for resampled data
sets. One unexpected result of the experiment was that sample
sizes were generally larger for the resampled LODs versus
the directly sampled LODs. We expected the sample sizes to
track more closely with each other because the number of
lattice constraint sites is identical between the directly sampled
and resampled LODs. This result may be representative of
an aliasing artifact or it may simply be due to the fact that
resampled points are not subjected to further filtering, unlike
their directly sampled counterparts as detailed in Section IV.

Next, to demonstrate algorithm run-time scaling and appli-
cation to various point cloud source types, we ran our LOD
generation approach against additional data sets of 20-pls/m2

GmAPD LiDAR and 24-pls/m2 linear-mode LiDAR. The
GmAPD LiDAR data set contains nearly 35 million points
over approximately 0.58 km2. It is a single tile from an aerial
mapping survey collected as part of the North-East Illinois
(NEIL) pilot project provided by Harris Corporation [34].
The GmAPD product is derived from double overlapping
swaths of elliptically scanned raw data. The linear-mode data
set contains nearly 124 million points over approximately
2.32 km2. It is part of an aerial mapping survey over Hill-
borough County, FL collected for Southwest Florida Water
Management District. The linear product is derived from
an aggregation of primarily single swath coverage collected
with a Riegl VQ-1560i airborne laser scanning (ALS) which
collects two crossing scan lines simultaneously. These data sets
were selected to illustrate both processing time scaling with
respect to input data size as well as consistent performance in
data reduction in resultant LODs.

Fig. 9 compares the results of down-sampling both data
sets to the coarsest generated LOD of 1 pls/m2 versus the
respective native samplings. Both data sets are very dense
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Fig. 9. GmAPD and linear LiDAR products showing original and preserved structures at native sampling and resampled to 1 pls/m2. (Top row) GmAPD
products. (Bottom row) Linear-mode products. (a) and (b) Preservation of steep vertical features like the church steeple, power lines and poles, and tree
structures. (c) and (d) Preservation of fine features like the playground, swing set, and faint power lines. (e)–(h) Similar preservation of fine and vertical
features in linear mode data where vertical sampling may be significantly coarser than horizontal due to line of sight (LOS) obliquity.

TABLE VIII

RESAMPLING RUN TIMES BY LOD

at their native sampling with sufficient obliquity to capture
vertical structures like building sides, power poles and lines,
and fences. These examples show that our approach provides
a natural sampling of the scene in both horizontal and vertical,
preserving structures in 3-D even when down-sampling very
coarsely with respect to native product sampling.

Table VIII summarizes the run times required to generate
each LOD in a single-threaded process on a 3.1-GHz Red Hat
Enterprise Linux (RHEL) system. The run times appear to at
least meet the predicted growth from Section II-J. As expected,
run times are largely dominated by the time required to
spatially index and iterate over the input point cloud. This
leads to largely linear growth in run time with respect to input
point cloud size with run times slightly improving for coarser
LODs.

The timing results also inform the design of parallel
processing approaches. While the majority of our processing

steps are trivially parallelizable, there are two aspects of our
algorithm that do not readily support parallelization. The first
challenge to parallelizing our approach is spatially indexing
the input data. While possible, developing a parallel approach
to building the spatial index is nontrivial. However, the larger
barrier to parallelizing our approach is in Algorithm 5. The
loop dependence on the candidate sample set in this algorithm
would need to be removed to make any parallelization viable.
The most straightforward approach to resolving this issue is to
parallelize via a simple divide and conquer approach. By per-
forming an initial spatial partitioning of the input data into
equal areas, each area can be processed independently by
separate threads with a trivial merge to consolidate the indi-
vidual result sets. The expected speed gains from such an
approach should scale approximately with the number of
threads dedicated to the parallel processing.

VII. SUMMARY

The sampling rates for LiDAR point clouds may be highly
variable depending on the desired application domain and
support needed for downstream analysis. To date, LiDAR
specifications and studies have focused on two primary metrics
for quantifying point cloud sampling rates: NPS and NPD.
These metrics focus only on horizontal sampling rates and
provide little guidance for vertical sampling rates or optimizing
point cloud sizes while maintaining the desired sampling
support.

In this article, we present several approaches for extending
the inherently 2-D concepts of NPS and NPD to 3-D sampling
via LCS. Furthermore, we demonstrate how the sampling
lattices may be scaled to preserve several desirable traits
of an SC lattice while potentially offering greater sampling
efficiency or robustness to voids.

We present two forms of LCS that offer subtle differences in
the preservation of fine feature details in point clouds. We also
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address the primary sampling artifact that manifests with LCS
and provide a mitigation strategy.

Finally, we demonstrate how LCS may be employed to
generate point cloud LODs with a specialized approach given
for single-photon and GmAPD LiDAR systems.

We believe that there is potential work remaining to refine
the measured performance of LiDAR systems with respect
to the sampling rates observed in their derivative products.
Specifically, there needs to be greater consensus on the defin-
itions of NPS and NPD and the methods used to assess these
metrics. Furthermore, while we were able to propose lattice
constraints that would preserve texture and spatial resolution
with greater sampling efficiency than an SC lattice, we have
yet to establish a methodology for validating the performance
of these constraints.

Finally, we believe there are potential applications of the
LOD approaches presented in this article remaining to be
explored. For example, given the incredible size of LiDAR
data holdings, especially for high-resolution data sets, there
may be applications related to data streaming, indexing, and
hierarchical processing that are enabled by the LOD generation
approaches we present.
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