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ABSTRACT

Modern LiDAR collection systems generate very large data sets ap-
proaching several million to billions of point samples per product.
Compression techniques have been developed to help manage the
large data sets. However, sparsifying LiDAR survey data by means
other than random decimation remains largely unexplored. In con-
trast, surface model simplification algorithms are well-established,
especially with respect to the complementary problem of surface
reconstruction. Unfortunately, surface model simplification algo-
rithms are often not directly applicable to LiDAR survey data due
to the true 3D nature of the data sets. Further, LIDAR data is often
attributed with additional user data that should be considered as po-
tentially salient information. This paper makes the following main
contributions in this area: (i) We generalize some features defined
on spatial coordinates to arbitrary dimensions and extend these fea-
tures to provide local multidimensional statistics. (ii) We propose
an approach for sparsifying point clouds similar to mesh-free sur-
face simplification that preserves saliency with respect to the multi-
dimensional information content. (iii) We show direct application to
LiDAR data and evaluate the benefits in terms of level of sparsity
Versus entropy.

Index Terms— LiDAR, multidimensional systems, point cloud,
mesh-free simplification, principal component analysis

1. INTRODUCTION

Mapping and surveying Light Detection and Ranging (LiDAR) sys-
tems produce large amounts of true three-dimensional (3D) data.
Modern systems sample several thousand to over a million points per
second resulting in several million to billions of point samples per
product to be stored, processed, analyzed and distributed [1, 2, 3].

Managing such large data sets presents a host of challenges to
content providers. Production strategies have been developed to
mitigate data management issues inherent in processing large-scale
projects [4]. However, user demands for simultaneous wide-area
coverage, high-fidelity scene content, and low-latency access keep
data sizing considerations at the forefront of content provider con-
cerns.

The LAS file format was developed to facilitate the exchange of
LiDAR data [5]. Extensions to the LAS format, e.g. LASzip, and
generic exchange formats, e.g. HDF5, further address data sizing
concerns by offering support for lossless compression with typical
performance yielding files between 10 and 20 percent of the original
file size [6, 7]. However, even with an effective compression strat-
egy, explicit data reduction is often necessary to support users in
bandwidth-limited and mobile device environments. It is therefore
necessary to establish approaches to intelligently reduce point data
in a manner that preserves information content. Current approaches
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focus primarily on preserving the surface structures represented by
the spatial coordinates [8]. We describe an approach that also allows
for the preservation of non-surface structures and includes point at-
tribution in the salience criterion.

2. NOVELTY AND RELATIONSHIP TO PRIOR WORK

Simplification of LiDAR survey data remains largely unexplored,
however point-based surface model simplification algorithms are
well-established, especially with respect to the complementary
problem of surface reconstruction. We refer to the survey conducted
by Pauly et al. for an overview of point-based surface simplification
[8]. In this problem domain, there is an underlying assumption that
points in the cloud all belong to surfaces embedded in the spatial
dimensions. This assumption is frequently violated in LiDAR data
where points often belong to non-surface features. Further, survey
data is often attributed with additional information that should be
considered in the simplification process lest salient information be
lost [4]. Regardless of these limitations, we draw inspiration for our
approach from mesh-free surface simplification approaches.

Dyn et al. [9] present an iterative sub-sampling approach sup-
ported by local surface approximation. Their approach operates in
a fine-to-coarse manner terminated by a desired point set size, 7.
Their point selection is solely based on the input point cloud geom-
etry, P C R®, and a salience criterion, s: 7 C P\ {&} — R.
An important aspect of s is that it updates with respect to the current
subset 7 C P throughout the point removal process.

Yu et al. [10] present a similar approach that enforces a post-
condition of a terminal point set size and operates in an adaptive
manner driven by point clustering and a user-specified simplification
criteria and optimization process.

While these approaches operate without generating an explicit
mesh surface, they carry forward the legacy of mesh-based ap-
proaches by limiting their analysis to spatial coordinates and operat-
ing under the assumption that points locally approximate a surface.
In contrast, natural scenes are complex and contain significant points
belonging to linear, planar, and isotropic structures. LiDAR survey
data is also frequently attributed with intensity or color data, classi-
fication, or other user-defined features. These additional dimensions
may contain content that is salient to end-user applications which
suggests the need for a multidimensional approach to point removal.

The primary goal of this paper, therefore, is to create a data spar-
sifying algorithm by developing a multidimensional salience mea-
sure, s: P — R, and therefore demonstrate that such multidimen-
sional approach produces sparse point representations that preserve
salience. Several approaches have been developed to identify salient
points based solely on 3D spatial coordinates. West et al. introduce
features based on structure-tensor—eigenvalue analysis of local point

ICIP 2014



e

(2 (b) (©) (d

(e) ® (@ (b

Fig. 1: Visualization of Neighborhood Features on section of Arm-
strong/Enderby data set from Applied Imagery. (a) Density, (b) Om-
nivariance, (c) Isotropy, (d) Anisotropy, (¢) Dimensionality, (f) Di-
mension Label, (g), Component Entropy, (h) Dimensional Entropy

neighborhoods [11]. These feature descriptors have been enhanced
to extract strong spatially linear features to support scene modeling
applications [12]. Methods have also been developed to direct opti-
mal neighborhood scale selection for feature attribution [13]. Next,
we generalize these attribute definitions to arbitrary dimensions to
serve as the basis for measuring salience.

3. LOCAL STATISTIC ATTRIBUTION

Our salience measure is based on attributes defined by neighbor-
hoods in arbitrary dimensions. In this section, we establish our def-
inition for locality in arbitrary dimensions and generalize the defi-
nitions for previously-established features in the spatial domain to
arbitrary dimensions. Figure 1 illustrates the features we consider
based on evaluation of 3D spatial point data.

3.1. Data Conditioning

Our attributes are based on principal components analysis which is
sensitive to differences in scale within the feature space. The source
data should therefore be conditioned prior to analysis so that dif-
ferent classes of attributes have approximately the same precision
scale or measurement resolution. Without this adjustment, insignifi-
cant variations within one dimension can easily dominate significant
variations in another. We perform this conditioning by first decen-
tering the data then normalizing each class by an estimate of the
measurement resolution for the class. We estimate the measurement
resolution by computing the standard deviation within a flat response
region for each attribute in the class. We then take the minimum
class attribute standard deviation as the measurement resolution for
the class.

3.2. Locality

We consider the analysis of multidimensional points, € R", where
N is the set of native attributes for the point and |A| = n is the di-
mension of the native feature space. All attributes are assumed to be
real-valued. While boolean and finite-class attributes may be sim-
ply represented by an appropriate integer enumeration, our approach
is unlikely to yield meaningful results with such classes due to the
conditioning issues mentioned previously. Our definition of a point
cloud, D C R", then is simply a database of real-valued multidi-
mensional points with consistent feature space definition.
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In most cases, it is desirable to restrict neighborhood definition
to a subset of the available native feature space. To support this
capability, we establish a database of query points, @ C R™, where
M C N is the search space of attributes for the determination of
locality and | M| = m is the dimension of the search space.

We proceed by analyzing the neighborhoods of points about the
query points, Vg C D. The neighborhoods are defined by an m-
dimensional distance metric, §, between the query points, g € Q,
and the data points, € D. For point cloud simplification, we treat
each ¢ € D as a query location (i.e., @ = D). This approach re-
quires a reasonable all nearest-neighbor search algorithm to be prac-
tical, that is one with complexity no worse than O(plog p) where
p=|D|.

We investigated two neighborhood definitions that each present
merits. The k-nearest neighborhood, V¥, consists of the k closest
points to g in D whereas the fixed-radius neighborhood, Vg, consists
of all points in D within the ball of radius r centered at q. Similar
to Dyn et al., we enforce the condition that ¢ & Vg [9]. This con-
dition is imposed so that Vg4 can be used to estimate the effects of
eliminating g during the simplification process.

3.3. Structure Features

West et al. and Demantké ez al. define several features for describing
3D point neighborhoods. In this section, we generalize, and in some
cases modify, their proposed features to support multidimensional
analysis and interpretability. The generalized features are summa-
rized in table 1.

Name Equation
" 1
Omnivariance Ommi: <H )\d> )
d=1
On
Isotropy Iso: — ?2)
o1
Anisotropy Ani: 2L~ %n 3)
o1
0d—0d+1
Dimensionality g o1 yd<n 4)
Iso ,d=mn
Dimension Label d*: argmax ag 5)
de{l,...,n}

Component Entropy H,: —Z 6q4log,, G4 (6)
d=1

Dimensional Entropy H,: —Z aqlog,, aq (@)
d=1

Table 1: Features defined on Vg

West et al. present six features that proved to be most applicable
to their work in segmentation and object recognition: omnivariance,
anisotropy, linearity, planarity, sphericity, and eigenentropy [11].
Each of the features they describe are derived from the eigenvalues
resulting from the principal components analysis of the query neigh-
borhoods, V4. However, while West et al. define the features with
respect to the eigenvalues, A1 > A2 > - -+ > \,,, we generally pre-
fer to use the singular values, o1 > g2 > - -+ > oy, as demonstrated
by Demantké ez al. [13]. The sole exception to this recommendation
is the omnivariance feature which is used to meaningfully compare
the total variance of the neighborhoods to each other. Re-defining
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the feature with respect to the singular values, while still meaning-
ful, would be more directly related to the standard deviation.

Linearity, planarity, and sphericity are closely related features
that each represent the concept of the neigborhood’s participation in
subsequently higher dimensions. That is, the values attempt to cap-
ture the degree to which the local neighborhood spreads into each
of the respective dimensions [11]. We generalize this concept as di-
mensionality and define the family of features by equation (4). We
feel that it is worth considering the highest order dimensionality of
the data set as a unique feature as well and generalize the concept to
isotropy as defined by equation (2). The complement of this value,
anisotropy, is thus easily understood and maintains a definition con-
sistent with West e? al. as expressed by equation (3)

Eigenentropy is a feature based on the Shannon entropy of the
principal component eigenvalues. It describes the dimensional par-
ticipation of the neighborhood. That is, higher values imply greater
participation across more of the available dimensions [11]. We gen-
eralize this feature by modifying the logarithmic base to the number
of dimensions, n, and operating on normalized singular values, 64,
instead of raw eigenvalues. We normalize the singular values by
the sum over all singular values for the neighborhood so that each
value can be treated as a probability that a point in the neighborhood
has the respective eigenvector as its dominant local coordinate axis.
The resulting feature, which we call component entropy, describes
the unpredictability of the neighborhood in the n-dimensional space
and is expressed by equation (6).

Demantké et al. introduce two additional features to support au-
tomated neighborhood scale selection: dimensionality labeling and
dimensional entropy [13]. The dimension label is simply the dimen-
sion that maximizes equation (4). We use this feature to establish an
equivalence relationon D x D,x ~ y <= d"(Vz) = d*(Vy).
This equivalence relation creates a partition on D that we leverage
as part of our simplification algorithm as described in section 4. Di-
mensional entropy is very similar in concept to the component en-
tropy, with the exception that it describes the Shannon entropy of
the dimensionality feature. This feature describes the unpredictabil-
ity of the dimension label feature and acts as a figure of merit for the
selected label.

4. APPROACH

In this section, we describe a general point cloud sparsifying algo-
rithm, derive the multidimensional salience measure, and describe
the update operations that must take place per iteration to enforce
the correct dynamic behavior of the salience measure. Algorithm 1
describes our solution that supports sparsifying points in arbitrary
dimensions. Our objective is to remove least salient points, while
preserving the proportional distribution of dimension labels in the
final point set. We also wish to maintain the behavior that the algo-
rithm computes a unique nested sequence of subsets that can be used
to define a multiresolution model.

The dimensional partitioning at line 3 of algorithm 1 is simply
achieved by segregating points according to equivalence relation es-
tablished by equation (5). This partitioning only happens once to
establish the apparent local dimension of the point neighborhoods.
Points are not moved out of their initial partition, regardless of how
their descriptive features evolve through the sparsifying process.

We simultaneously enforce the proportional sparsifying con-
straint and the nested subset constraint by removing points from the
partitions in an interleaved manner. We order the partitions so that
|Mi]| > -+ > |M,]. The pre-computed priorities for each parti-
tion are given by equation (8) where M = maxge(i,....n} | Mal.
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Algorithm 1 Multidimensional Point Cloud Simplification

Require: D C R"\ {@},|D| = N, 7 € Zn
Ensure: 7 C D,|T| =71
1: function MULTIDIMREMOVEPOINTS(D, 7)

2: T+ D

3: M <D/~

4: while | 7| > 7 do

5: d* < argmin min Py
de{l,...,n}

6: Pa= < Pax \ {min Py~ }

7: x* < argmin s(x)
TEM gx

8: Mg — Mg\ {z"}

9: T+ T\{z"}

10: return 7

mM
Pa = +
¢ {wd\

In each iteration, we seek to select the point that minimizes the
change of information content in the point cloud. Dyn ef al. use a
salience measure that increases in value as points in the neighbor-
hood diverge from the local fit of a smoothed surface [9]. Obviously,
we are unable to use a similar model for salience since our measure
must be defined for arbitrary dimension. However, recall from sec-
tion 3.3 that equation 6 describes the unpredictability of the neigh-
borhood and acts as a measure of information content in the local
neighborhood. We therefore select this feature, which is defined for
arbitrary dimension, as the basis for our salience measure.

To estimate the change of information content caused by the re-
moval of a point, we first establish a baseline estimate. The baseline,
H, 0, is based on the component entropy of the initial point neigh-
borhoods as described by equation (9).

L;l;vme1,...7wd|} ®)

Hoo(z) = Hs (Vo U {z}) ©)

We estimate the change of information content caused by the re-
moval of a point as the maximum absolute deviation of the neighbor-
hood component entropy from the component baselines as described
by equation (10). This measure acts as the salience function for our
sparsifying process.

s(x) = max|Hoo(y) — Ho (Vo) (10)

In each iteration, the point, *, that minimizes equation (10)
is selected for removal. To ensure that removed points continue to
influence the sparsifying process, we maintain a constituency, Cq,
for each & € D. The constituency sets serve an identical function
to the test sets described by Dyn ef al. and are updated in a similar
manner [9].

The constituency contains the set of points represented by .
Initially, each point represents only itself, i.e. Co = {@}. When a
point, x*, is selected for removal, its constituency, Cx+, is distributed
among its neighbors’ constituencies, {Cy : y € Vz~ }, by selecting
the closest y € V.« as a representative for each z € Cg=.

In addition to updating the constituencies, we must also update
the neighborhoods containing the removed point to make sure that
it does not continue to influence estimates of the current point cloud
state. The set of back-references to the neighborhoods containing
each point, By = {Vy : © € Vy}, are maintained to keep this up-
date operation efficient. The neighborhoods containing the removed
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() 75%, H 5,0 ~ 0.7369 (b) 50%, Ho o =~ 0.7367

(c) 25%, H 0 =~ 0.7384 (d) 10%, Hy,0 ~ 0.7393

Fig. 2: Data output by our approach on Dragon from the Stanford
3D Scanning Repository
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Fig. 3: Least salience and mean baseline entropy trends during sim-
plification of Dragon to 1% of the original point cloud size

point replace it with a new closest point from their neighbor’s neigh-
borhoods. That is, from the set

U Va\ ({27 U Vy) an

ZEVy

If the set described by equation (11) is empty, a closest point
from the current set of remaining points is selected instead.

Finally, the salience measures for each & € Vg« U By are up-
dated according to equation (10).

5. RESULTS AND DISCUSSION

We have implemented our approach using vantage point tree [14]
for the spatial indexing structure in support of all nearest neighbor
searching and splay tree [15] for managing the salience heap. The
selection of these data structures maintains aymptotic complexity
equivalent to the approach proposed by Dyn et al. while compen-
sating for higher dimensional data.

To illustrate the effectiveness of our approach, we first applied
our algorithm to the standard Dragon data set from the Stanford 3D
scanning repository which contains only spatial coordinates with
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(a) 100%

(b) 10% © 1%

Fig. 4: Mesh reconstruction from data output by our approach on
Vellum Manuscript from the Stanford 3D Scanning Repository

no additional attribution. Figure 2 shows results for data sparsi-
fied to 75%, 50%, 25% and 10% of the original point cloud size,
|D| = 435545. This test case demonstrates that our approach pro-
duces a sparse representation of the original data that preserves fea-
tures that are salient with respect to representing the original surface.
Figure 3 illustrates the behavior of the algorithm during the sparsify-
ing process. The salience measure does not increase monotonically
throughout the sparsifying process since the point removal and up-
date process does not enforce any guarantees on the entropies of
the affected neighborhoods. However, figure 3a illustrates that the
least salience trend increases monotonically throughout the sparsi-
fying process. Figure 3b illustrates the effect of our salience mea-
sure on the mean baseline entropy for the model. Since we define
salience to minimize change in entropy, the mean entropy remains
very flat through most of the sparsifying process and in fact in-
creases slightly as redundant points are removed. However, there
is a point beyond which significant points are removed and mean en-
tropy drops sharply as a result. For the Dragon test case, this occurs
once approximately 90% of the original points have been removed.

Next, to illustrate the effectiveness of our approach on multidi-
mensional data, we applied our algorithm to the Vellum Manuscript
data set from the Stanford 3D scanning repository which contains
spatial coordinates with color attribution per point. Figure 4 shows
mesh reconstructions of data sparsified to 100%, 10%, and 1% of
the original point cloud size, |D| = 2155617. This test case demon-
strates that our salience measure generalizes to multidimensional
data. The example illustrates preservation of fine features in the nD
data set up to high levels of sparsity. The thin red margin lines are
visible and paper edges are preserved even when data is sparsified to
just 1% of the original data size. Our approach is lossy, though, and
significant degradation is noticeable at the 1% level. However, we
are able to create a very faithful reconstruction of the data set with
just 10% of the original data.

6. CONCLUSION AND FUTURE WORK

In this paper, we develop extensions of established 3D features to
arbitrary dimensions and present an application to sparse represen-
tation of point clouds. We believe that this approach may be further
enhanced by better selecting the initial neighborhood sizes using an
approach such as the one proposed by Demantké et al. [13] We
also believe that there are other potentially interesting applications
of these features that warrant investigation, for example as features
that support correlation and registration algorithms.
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